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Abstract 

This paper presents the first version of the SpeechRaterSM system for automatically 

scoring non-native spontaneous high-entropy speech in the context of an online practice 

test for prospective takers of the Test of English as a Foreign Language®  internet-based 

test (TOEFL® iBT). 

The system consists of a speech recognizer trained on non-native English speech 

data, a feature computation module, using speech recognizer output to compute a set of 

mostly fluency based features, and a multiple regression scoring model which predicts a 

speaking proficiency score for every test item response, using a sub-set of the features 

generated by the previous component. Experiments with classification and regression 

trees (CART) complement those performed with multiple regression. We evaluate the 
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system both on TOEFL Practice data (TOEFL Practice Online (TPO)) as well as on field 

study data collected before the introduction of the TOEFL iBT. 

Features are selected by test development experts based on both their empirical 

correlations with human scores as well as on their coverage of the concept of 

communicative competence. 

We conclude that while the correlation between machine scores and human scores on TPO 

(of 0.57) still differs by 0.17 from the inter-human correlation (of 0.74) on complete sets of six 

items (Pearson r correlation coefficients), the correlation of 0.57 is still high enough to warrant 

the deployment of the system in a low-stakes practice environment, given its coverage of several 

important aspects of communicative competence such as fluency, vocabulary diversity, grammar, 

and pronunciation. Another reason why the deployment of the system in a low-stakes practice 

environment is warranted is that this system is an initial version of a long-term research and 

development program where features related to vocabulary, grammar, and content will be added 

in a later stage when automatic speech recognition performance improves, which can then be 

easily achieved without a re-design of the system 

Exact agreement on single TPO items between our system and human scores was 57.8%, 

essentially at par with inter-human agreement of 57.2%.  

Our system has been in operational use to score TOEFL Practice Online Speaking 

tests since the Fall of 2006 and has since scored tens of thousands of tests. 

 

Keywords: speech scoring, automatic scoring, spoken language scoring, scoring of 

spontaneous speech, speaking assessment 

 

1. Introduction 

 

In testing language proficiency with tests such as the TOEFL® iBT, an important 

distinction can be made between the two receptive modalities of language (listening, 

reading) and the two productive modalities (speaking, writing). While the receptive 

modalities cannot easily be tested directly, e.g., by observing how the listening and 

language understanding processes unfold in the test taker’s brain, they can be quite 

conveniently tested by focusing on the comprehension aspect of both listening and 

reading. These tests have traditionally used a multiple-choice paradigm, a design that has 
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flourished as the preferred item type for more than a generation, and with good reason.  It 

is efficient to develop and administer, can be scored relatively unambiguously and 

swiftly, and is supported by a rich infrastructure of statistical methods and test theory.  

Furthermore, there is an increasing availability and lower cost of online administration 

and instantaneous scoring. 

When looking at the productive modalities of language, speaking and writing, 

however, an argument for a multiple-choice design is much harder to make since it defies 

the purpose of the assessment, namely, how well a test taker can use the language for 

communicative purposes – how proficient he or she is in speaking and in writing. 

Although approximations have been used in the past, such as combining partial 

sentences, they cannot really assess genuine productive language use. 

For these reasons, so-called “constructed response” items are used in the TOEFL® 

iBT speaking and writing sections where candidates have to produce several samples of 

speech, relating to a pre-specified task, and have to write several essays on a given topic.  

This different test design has generally necessitated the use of the slower and more 

costly human scoring that accompanies use of constructed response items.  Despite 

research into automated scoring of complex tasks extending back more than 40 years 

(e.g., Page, 1966), only relatively recently (Clauser et al., 1997; Burstein, et. al., 1998; 

Williamson et al., 1999) has the ability for computerized delivery and automated scoring 

of constructed response items enabled the practical operational use of automated scoring 

for such items.  Initially, such applications were primarily in automated scoring of essays 

(e.g. Burstein et al., 1998; Chodorow & Burstein, 2004; Attali & Burstein, 2005; 

Landauer, & Dumais, 1997; Rudner et al., 2006), which has matured to a considerable 

degree.  However, recent research in natural language processing and speech recognition 

capabilities has expanded the nature of constructed response tasks that are automatically 

scorable to include short answer tasks requiring factual information (e.g., Leacock, 2004; 

Leacock & Chodorow, 2003) and tasks eliciting highly predictable speech (e.g., 

Bernstein, 1999).   

What has not been attempted so far, however, is to build an automatic scoring system 

for speech with high linguistic entropy, i.e., where the sequence of words is largely 

unpredictable. TOEFL iBT Speaking has items that elicit spoken responses about 
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everyday familiar topics, as well as about campus life and academic situations, all of 

which require free, spontaneous, high-entropy speech responses by the test candidates. 

The two major challenges for scoring high-entropy speech --- aside from challenges 

related to natural language processing which are similar to those involved with scoring 

essays --- are that (a) one cannot use a pattern matching or forced-alignment approach as 

it is commonly used in low-entropy scoring paradigms; and (b) that non-native 

spontaneous speech is inherently hard to recognize and only moderate word accuracies 

are realistically achievable. TOEFL iBT is taken all over the world by speakers of more 

than 100 native languages, which poses additional challenges in speech recognition.  

To address the first challenge, we are using speech features, derived from speech 

recognition output, to be used by a machine learning component that predicts scores for 

speaking proficiency (the “scoring model”). The second challenge is addressed by 

focusing on low-level1 fluency features where word identities are not of critical 

importance. 

At first glance, this approach may seem somewhat contradictory since one could raise 

the question of why using automatic speech recognition (ASR) technology is necessary if 

the features are mostly related to fluency and not so much to word identity and if word 

accuracy for this task is expected to be rather low. Our reasons for relying on ASR 

technology are two-fold, however: (a) not all of the most relevant features can be 

computed without knowing word identities; and (b) this system is an initial version of a 

long-term research and development program where higher-level features (e.g., related to 

vocabulary, grammar, and content) will be added in a later stage when ASR performance 

improves. This we can then do seamlessly without a re-design of the system, which 

would be necessary had we started out without using ASR technology for this initial 

version. 

This paper presents the results of a research and development effort for 

SpeechRaterSM v1.0, an automated scoring system for the spontaneous speech of English 

language learners used operationally in the TOEFL Practice Online assessment. Its three 

main components are a state-of-the-art speech recognizer, generating word-level 

                                                 
1 With “low-level” we like to indicate the contrast to “high-level” linguistic features, such as those related 
to content or grammar. In other words, we consider the level of word-based linguistic complexity here. 
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information (including inter-word pauses) as well as response-level scores (acoustic and 

language model scores), a feature computation module, operating on the output of the 

recognizer, and a scoring model which maps a subset of the speech features to a speaking 

proficiency score, trained on human rated test items. 

Our two main success criteria for making a positive decision for operational use of 

SpeechRater in the TOEFL Practice Online Speaking test are (a) a reasonable coverage of 

the concept of communicative competence by our features (Condition 1); and (b) an only 

moderate drop in Pearson r correlation of machine-human score comparisons from 

human-human score comparisons  (Condition 2). 

These conditions would certainly be more stringent for a deployment in a high-stakes 

environment, but we feel that the advantage of the fast turnaround time compared to 

human scoring in conjunction with a fulfillment of the 2 stated conditions can warrant the 

implementation of our system for the TOEFL Practice Online Speaking test. 

The organization of this paper is as follows: Section 2 presents related work, Section 

3 describes the TOEFL Practice Online test, and Section 4 introduces the system 

architecture of SpeechRater. In Section 5 we describe the data used to develop and 

evaluate the system, and in Sections 6, 7, and 8 we describe the development and 

evaluations of the three main components of SpeechRater, namely the speech recognizer, 

the feature computation module, and the scoring model. Next, we discuss our 

contributions in Section 9 and conclude in Section 10, with an outlook on future work. 

 

2. Related Work 

 

There has been previous work to characterize aspects of communicative competence 

such as fluency, pronunciation, and prosody. Franco et al. (2000a, 2000b) present a 

system for automatic evaluation of the pronunciation quality of both native and non-

native speakers of English on the phone level and the sentence level (EduSpeak). 

Candidates read English texts and a forced alignment between the speech signal and the 

ideal path through the Hidden Markov Model (HMM) is computed. Next, the log 

posterior probabilities for pronouncing a certain phone at a certain position in the signal 

are computed to achieve a local pronunciation score. These scores are then combined 
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with other automatically derived measures such as the rate of speech (number of words 

per second) or the duration of phonemes to yield global pronunciation scores. 

Cucchiarini et al. (1997a, 1997b, 2000a, 2000b, 2002) describe a system for Dutch 

pronunciation scoring along similar lines. Their feature set, however, is more extensive 

and contains, in addition to log likelihood Hidden Markov Model scores, various duration 

scores, and information on pauses, word stress, syllable structure, and intonation. In an 

evaluation, correlations between four human scores and five machine scores range from 

0.67 to 0.92. 

Bernstein (1999) presents a test for spoken English (SET-10) that uses the following 

types of items: reading, sentence repetition, sentence building, opposites, short questions, 

and open-ended questions. All types except for the last are scored automatically and a 

score is reported that can be interpreted as an indicator of how native-like a speaker’s 

speech is. In Bernstein et al. (2000), an experiment is performed to establish the 

generalizability of the SET-10 test.  It is shown that the SET-10 test scores can predict 

different levels on the Oral Interaction Scale of the Council of Europe’s Framework for 

describing oral proficiency of second/foreign language speakers with reasonable accuracy 

(North. 2000). This paper further reports on studies done to correlate the SET-10 

automated scores with the human scores from two other tests of oral English 

communication skills. Correlations are found to be between 0.73 and 0.88.  

Zechner and Bejar (2006) investigate the  automated scoring of unrestricted, 

spontaneous speech of non-native speakers. They focus on exploring a number of 

different fluency features for the automated scoring of short (one minute) responses to 

test questions in a TOEFL-related program. They explore scoring models based on 

classification and regression trees (CART) as well as support vector machines (SVM). 

Their findings are that the SVM models are more useful for a quantitative analysis, 

whereas the CART models allow for a more transparent summary of the patterns that 

underlie the data.  

In this paper, we compare using CART (Brieman et al., 1984) and multiple regression 

(MR) to build the scoring models for TOEFL Practice Online. Another major difference 

between previous work and the work reported in this paper is that we use feature 

normalization and transformation to obtain statistically more meaningful input variables 
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for the scoring model. In addition, we do not use the whole set of features in an 

exploratory fashion. Instead, we have carefully selected a subset of features that are both 

good predictors of human scores and maximize the representation of the concept of 

communicative competence (Bachman, 1990; Bachman and Palmers, 1996), given the 

restrictions due to imperfect word accuracy by the ASR system which limits the feature 

space to mostly fluency-related features. Only with significantly higher word accuracy, 

could a more complete coverage of communicative competence be attempted by adding 

features related to grammatical accuracy, topical content etc. 

 

3. TOEFL Practice Online 

 

The Speaking section of the TOEFL iBT is designed to measure the academic English 

speaking abilities of non-native speakers who plan to study at English-medium 

institutions for higher education.  Using tasks that require language use typical of an 

academic environment, TOEFL iBT Speaking represents an important advancement in 

the large-scale assessment of productive skills. (Speaking was not a compulsory 

component of TOEFL prior to TOEFL iBT. Test of Spoken English, TSE®, was offered 

as a separate speaking test for institutions which required their applicants to submit 

speaking scores.)  However, it poses challenges to learners in parts of the world where 

opportunities to practice speaking English are limited.  

The TOEFL Practice On-line (TPO) assessment is designed to help prospective 

TOEFL iBT examinees become familiar with and better prepared for the TOEFL iBT.  It 

is designed to mirror the content and design characteristics of the TOEFL iBT to the 

extent possible in an economical practice environment.  As such, the various sections of 

the TPO each have the same number of items, same mixture of content represented, and 

same item types that appear in the operational TOEFL.  In fact, all of the items that are 

used for the TPO are retired operational TOEFL iBT items.  However, unlike the TOEFL 

iBT test, the TPO allows users to customize their practice and take the test in a timed 

mode or untimed mode.  The timed mode attempts to replicate the operational testing 

experience by using the same on-line delivery system and timing restrictions of the 

TOEFL iBT.  In the untimed mode, users can progress at their own pace, starting or 
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stopping the test whenever they like and revisiting items they have completed if desired.  

Another important distinction between the TPO and the TOEFL iBT is that the former 

targets more immediate and cost-effective score feedback.  This immediate feedback on 

students’ performance is intended to inform their self-assessment of understanding of and 

comfort with the TOEFL iBT test administration.  In early 2006 the users of TPO could 

instantly receive scores on reading and listening sections, both based on multiple-choice 

items, as well as the writing section, with automated writing scores provided by e-rater® 

(Attali & Burstein, 2004).  The scores on speaking sections were produced by human 

raters within five business days.  As a result of substantial interest in more immediate 

feedback from the speaking section of the TPO (hereafter called TOEFL iBT Speaking 

Practice test) a research agenda was launched to develop and deploy an automated 

scoring system for spontaneous speech.  The immediate goal of this effort was to improve 

the scoring efficiency of the TOEFL iBT Speaking Practice test while maintaining quality 

comparable to that of trained human rater scoring for the TPO assessment.  The long-

term goal is to provide instructional and diagnostic feedback based on automated features 

beyond the score feedback provided by human scoring while maintaining a level of 

accuracy of scores nearly equivalent to that of human scoring.2 The result of this effort 

was the release of SpeechRater v1.0 for operational use in the TPO in Fall of 2006.  

In the TOEFL iBT Speaking Practice test, as for the TOEFL iBT test, each test 

contains six tasks3.  The first two tasks are independent tasks that ask candidates to 

provide information or opinions on familiar topics based on their personal experience or 

background knowledge, with 45 seconds of speaking time.  The purpose of independent 

tasks is to measure the speaking ability of examinees independent of their ability to read 

or listen to English language.  The remaining four tasks are integrated tasks that engage 

reading, listening and speaking skills in combination to mimic the kinds of 

communication expected of students in campus-based situations and in academic courses. 

Candidates read and/or listen to some stimulus materials and then respond to a question 

based on them.  Each of the four integrated tasks has a speaking time of 60 seconds. The 

                                                 
2 We realize that these mentioned long-term goals are still far out of reach currently given the low word 
accuracy of the recognizer and more research needed in the area of useful feedback for (prospective)  test 
candidates. 
3 In this paper, we use the terms “tasks” and “items” interchangeably.  An item or task refers to a test 
question and the associated stimulus materials (if any).  . 
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entire Speaking section of the test takes approximately 20 minutes.  For each of the six 

tasks, after task stimulus materials and/or test questions are delivered, the examinees are 

allowed a short time to consider their response and then provide their responses in a 

spontaneous manner.    

The scoring rubric used by human raters to evaluate the responses to the TOEFL iBT 

Speaking Practice test is identical to that used for the TOEFL iBT Speaking Test. (A 

rubric is a table where for each score level, typical characteristics of candidates’ 

performances are listed to guide the human rater.) Similarly, the scoring of the practice 

test is conducted by raters who regularly score the operational TOEFL iBT Speaking test.  

The raters issue a holistic score for each response on a score scale from 1-4, 4 being the 

best, that is based on three key categories of performance: delivery (pronunciation, 

intonation, and fluency), language use (vocabulary and grammar), and topical 

development (content, coherence, and organization). 

 

4. SpeechRater System Architecture 

 

This section describes the architecture of our automated speech scoring system, which 

serves as a natural organizing structure for the remainder of the paper.  An automated 

speech scoring system consists of three major components (see Figure 1). First, the test 

taker’s voice is recorded in Windows Media (wma) format (22 kHz, 16 bit, mono), then 

converted to wav format (16 bit PCM, 11 kHz, mono), and sent to the speech recognizer. 

Second, the feature computation module reads the output hypotheses from the speech 

recognizer and generates a feature vector for each recorded speech sample. Third, a pre-

determined sub-set of the features are extracted and sent to the scoring model which then 

produces a score for every spoken response4. Finally, all six scores of a test are added and 

scaled to be sent back to the test taker. 

                                                 
4 While this paper reports on two different scoring model approaches, multiple regression and CART trees, 
the operational system only uses multiple regression. 
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Figure 1: Architecture of the SpeechRater automated speech scoring system.  
 

5. Data 

 

In building and evaluating the scoring models described in this report, we made use 

of two data sets: responses to the TOEFL Practice Online assessment (the TPO data set), 

and responses from a TOEFL iBT field study (the iBT data set).   

 

5.1 TOEFL iBT Practice Speaking data  

 

In total, the TPO data contains 4162 spoken responses.  These responses were double-

scored by human raters. For the purposes of model building and analysis, we used the 

second set of human scores, because they were undertaken under more optimal rating 

conditions. 
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The TPO data contains responses from four distinct test forms, with each test form 

containing six distinct speaking tasks: two independent tasks and four integrated tasks 

(see Section 3).  Each TPO response may be assigned a score in the range of 1-4 (with 4 

indicating the highest proficiency), or 0 if the candidate makes no attempt to answer or 

produces only a few words unrelated to the topic.  It may also be labeled as “technical 

difficulty” (TD) when technical issues may have degraded the audio quality so that a fair 

evaluation is not possible.  These scoring rules are in accordance with the scoring of the 

operational TOEFL iBT test, and with the scoring of the iBT field study data described 

below. 

We set aside a portion of the TPO data for the training of the speech recognizer (the 

rec-train set, about 1900 responses), and partitioned the remaining data into the scoring 

model train (sm-train, about 1300 responses) and evaluation (sm-eval, about 500 

responses) sets to maximize its utility in evaluating the features and in building and 

evaluating the scoring models discussed in Section 8.  (The remaining responses were TD 

or 0 which were excluded from this study.5) The scoring model train data were also used 

in evaluating the statistical properties of features. 

Orthographic human transcriptions were made for the entire rec-train set and for 

portions of the scoring model sets; in all about 3000 responses were transcribed. 

The partitioning of the TPO data was done in such a way that no overlap between 

speakers or tasks was allowed between the scoring model training and evaluation sets.  

The partitioning was also designed to minimize speaker and task overlap between the 

recognizer training set and all other sets, although this constraint could not be enforced 

absolutely.  In order to ensure that all data partitions were of sufficient size for their 

intended purposes, while meeting our other constraints, we were forced to accept some 

speaker and task overlap between the rec-train partition and other partitions.  The total 

proportion of responses with task and speaker overlap with the rec-train set amounts to 

25% of the sm-train set, and 31% of the sm-eval set.  Because there is still no overlap 

                                                 
5 In operational mode, these responses are filtered out using a predictor module based on some of the 
speech features described below in Section 7, as well as some basic prosodic features derived from a pitch 
tracker and from frame-based power information. We built an automatic classifier for this filtering model 
that has an accuracy on TPO data of over 99%. 
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between the sm-train and sm-eval sets, it is unlikely that this will result in inflated 

estimates of scoring accuracy for SpeechRater.6   

The partitioning process was also designed to ensure that the scoring model training 

and evaluation sets (a) contain a broad set of tasks, (b) contain similar proportions of 

responses from speakers of particular linguistic backgrounds, and (c) contain 

approximately the same proportion of responses to independent and integrated tasks. 

This resulted in the following division of the TPO data scored in the range of 1-4 into 

three sets (Table 1):  

 
Table 1  
Summary statistics of TPO data scored in the range of 1-4 (TD and 0 scores excluded). 

Score Distribution (percent 
in brackets) 

Data 
set 

Responses  Speakers Topics 
Average 

Score 
SD of 
Score 

1 2 3 4 
Rec-
train 1907 320 24 2.81 0.72 

52 
(3%)

550 
(29%)

1011 
(53%) 

294 
(15%)

Sm-
train 1257 263 15 2.74 0.77 

58 
(5%)

405 
(32%)

603 
(48%) 

191 
(15%)

Sm-
eval 520 120 9 2.73 0.69 

18 
(3%)

159 
(31%)

289 
(56%) 

54   
(10%)

 

The item-based agreement between human raters on rating scorable responses in the 

range 1-4 on the combined rec-train and sm-eval sets was fairly low7.  Exact agreement 

was only 57.2%, with a quadratic-weighted κ of 0.54, and Pearson r of 0.55.  The level of 

human agreement in terms of correlation and kappa improves somewhat as we aggregate 

scores; exact/adjacent agreement, correlation and kappa on summed pairs of scores, 

triples, and full sets of six is presented in Table 2. We use quadratically weighted Kappa 

(Cohen, 1968) throughout the paper, where the weights correspond to the squares of 

score differences. E.g., if the human score for a certain item was 1 and the machine score 

3, the weight for the kappa computation would be the square of 2, i.e., 4. That way, larger 

deviations from the gold standard are more heavily penalized than smaller ones.  

 
 

                                                 
6 While there can be an effect on word accuracy, we found in preliminary experiments that small changes in 
word accuracy have very little effect on features and scores. 
7 We combine these sets in order to be able to compute agreement on full sets of six items belonging to one 
test form. The scoring model evaluations done in Section 8 also refer to this data set combination. 
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Table 2  
Human agreement on aggregated TPO scores (TD and 0 scores excluded) for the TPO 
sm-eval + rec-train sets. 

Number 
of scores 

Exact 
agreement 

Exact + 
adjacent 

agreemen
t 

Quadratic-
weighted 

kappa 

Pearson 
r 

1 57.2% 97.5% .537 .547 

2 Not 1computed
Not 

computed .614 .632 

3 Not computed 
Not 

computed .656 .679 

6 Not computed 
Not 

computed .710 .742 

1. As a common practice, exact agreement and exact & adjacent agreement rates 
are only computed for item or task level scores.  

5.2 TOEFL  iBT Field Study data 

 
The TOEFL  iBT Field Study was a pilot study undertaken before the official roll-out 

of the TOEFL iBT test.  While we were primarily interested in model performance on 

TPO data, we used the field study data in doing some evaluation runs for a number of 

reasons.  First, the conditions under which the field study data were scored were closer to 

best practice than they were with the TPO data sets.  Second, the partitioning of the field 

study data allows for better evaluation of the effects of item score aggregation, since the 

evaluation set contains more complete forms (sets of 6 tasks for a given examinee).   

Third, the score distribution of the field study is more uniform and even, representing 

a situation encountered by a typical TOEFL iBT administration. Finally, evaluation on 

the field study data provides us with some idea of how our model generalizes across 

populations, file formats and speech recognizers.  (The file format for TPO Speaking is 

.wma, but for the Field Study it is .au.) 

The field study data contained 3502 responses from a single TOEFL iBT Speaking 

test form that were scored on the 1-4 scale (0s and TDs were not included).   Since we 

already had a non-native-speech trained recognizer for this file format, and none of these 

data were transcribed, all of the data were used for the scoring model train (smFS-train) 

and evaluation (smFS-eval) sets.  These two sets of data were constructed to maximize 

the number of examinees with six complete tasks in a set so that we could evaluate 
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candidates’ total scores on this section.  This constraint prevented us from enforcing a 

ban on task overlap between the smFS-train and smFS-eval sets, but did allow us to 

prevent speaker overlap.  Table 3 shows the properties of these two data sets. 

 
Table 3 
Summary statistics of iBT Field Study data sets 

Data 
sets 

Responses Speakers  Topics 
Average 

Score 
SD of 
Score 1 2 3 4 

smFS-
train 1750 311 6 2.44 1.02 366 573 482 329 

smFS-
eval 1752 315 6 2.48 1.00 339 553 542 318 

 

Not all of the responses in these sets were double-scored, so we were forced to 

evaluate the level of human agreement on that subset of the data which had been double-

scored.  These results are provided in Table 4.  (Note that we did not have enough 

double-scored responses to provide agreement results for sets of six tasks.) 
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Table 4  
Human agreement on aggregated Field Study scores 

Number 
of scores 

Exact 
agreement 

Exact + 
adjacent 

agreement 

Quadratic-
weighted 

kappa 
Pearson r

1 57.1% 98.3% .77 .77 
2 Not computed Not computed .86 .86 
3 Not computed Not computed .93 .94 

 

One point to note is that the human-human agreement as indicated by the weighted 

kappa and the correlation was much higher for the field study data than for the TPO data.  

This reflects in part the fact that the field study scores were more varied and more evenly 

distributed across the four score levels than the TPO scores.  In contrast, in the TPO data, 

the scores clustered around 3, with very few at the score level of 1.  

 

6. Speech Recognizers 

 

For both data sets, we use a state-of-the-art gender-independent HMM recognizer 

bootstrapped on a native speech recognizer but trained on non-native speech data. 

Whereas the TPO recognizer makes use of genuine TPO data for its training, we did not 

have transcribed iBT data and had to use a recognizer trained on similar non-native data, 

from the TOEFL Academic Speaking Test (TAST).  

Table 5 provides the information on the recognizers used for the TPO Speaking and 

the Field Study data sets. The word error rates were around 50%, which would be a low 

number for native speech, but not unreasonable for non-native speech with a large 

diversity of native language backgrounds and large variation in speaking proficiency. 

Word accuracies of individual responses vary considerably, typically between 10% and 

80%, where speakers with higher scores are also typically better recognized – 

correlations between word accuracy and human scores are around 0.4 (Pearson r values 

are significant at the 0.01 level). 
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Table 5 

Characteristics of the speech recognizers used for TPO Speaking and Field Study data 

sets. 

 TPO recognizer Field Study recognizer 

Audio format WAV (from WMA) AU 

Sampling rate 11kHz 8kHz 

Resolution 16 bit 8 bit 

Channels Mono Mono 

AM training – non-native 

responses (approx.) 

1900 650 

LM training – non-native 

responses (approx.) 

600000 words 80000 words 

LM training – native speech  

Corpora 

Broadcast News (LDC, 

1997) 

Broadcast News (LDC, 

1997) 

Evaluation set size in 

responses 

645 150 

Average word accuracy 49.6%* 52.6%* 

Range of word accuracy on 

evaluation set 

9.5% – 83.1% 4.2% - 82.6% 

Correlation between word 

accuracy and score 

0.39 0.47 

*We use an unbiased formula for word accuracy computation: word accuracy = 

100.0*0.5*(correct/(correct+deletions+substitutions)+correct/(correct+insertions+substitu

tions)). Unlike many other formulas for word accuracy and word error rate, this one is 

symmetrical between hypothesis and reference. 

 

7. Scoring Features  

 

The output of the recognizer is a list of words with timing and confidence score 

information. All features are computed based on this word list and the associated timing 

information by the feature computation module, except for amscore and lmscore (see 
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Table 6) which were drawn from the recognizer’s feedback on the entire utterance as 

opposed to individual words. 

Based on suggestions from the literature (e.g., Cucchiarini et al., 1997b, 2002), and 

from experts in test development and training of human raters, we put together a list of 29 

initial features (Table 6). 

They cover different aspects of communicative competence as denoted in the TOEFL 

iBT rubric; the focus is on fluency, with pronunciation, vocabulary diversity and 

grammatical accuracy added to the mix. 

Based on a thorough review by test development experts and human rater training 

specialists, a set of 13 features was selected from the initial list for use in the final 

component, the scoring model. The main criteria used in selection are (a) relevance to the 

construct of “speaking” (i.e., communicative competence), (b) coverage of all the 

features combined in representing the speaking construct (the overall quality of speech) 

and (c) good empirical evidence that a feature correlates well with human scores. 

Due to high inter-correlations between some of these features, two more features, 

which were essentially representing redundant information, were removed from the list to 

yield 11 final feature candidates for the scoring models (marked with a * in Table 6). 

Note that the final multiple regression scoring model only uses 5 of those 11 features. 

The feature set of 11 candidates was reduced to 5 features by means of building a 

regression model and keeping only the top performing features, while also considering 

maximal construct coverage (best representation of “communicative competence”) (see 

Section 8.1).  

 

Table 6 

Candidate features for the development of the scoring models. Features marked with a * were 
among the 11 selected features for scoring model training. 

Feature 
Number 

Feature Name 
Feature 

Class 
Dimension Description 

1 numwds Length NA Number of words 

2 Numtok Length NA Number of tokens [numwds+numdff]

3 globsegdur Length NA 
Duration of entire transcribed 
segment, including all pauses 
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4 segdur Length NA 
Total duration of segment without 

disfluencies & pauses 

5 uttsegdur Length NA 
Duration of entire transcribed 

segment but without inter-utterance 
pauses 

*6 wdpchk Fluency Delivery 
Average chunk length in words; a 
chunk is a segment of contiguous 

words 

7 secpchk Fluency Delivery Average chunk length in seconds 

*8 wpsec Fluency Delivery Articulation rate 

9 Wpsecutt Fluency Delivery Speaking rate 

10 secpchkmeandev Fluency Delivery Mean deviation of chunks in seconds

*11 wdpchkmeandev Fluency Delivery Mean deviation of chunks in words 

12 numsil Fluency Delivery Number of silences 

*13 silpwd Fluency Delivery 
Duration of silences per word: total 
duration of silences divided by # of 

words 

14 silpsec Fluency Delivery 

Duration of silences per second: total 
duration of silences divided by total 

duration of response without 
disfluencies & pauses 

*15 silmean Fluency Delivery Mean of silence duration (in seconds)

16 silmeandev Fluency Delivery Mean deviation of silences 

17 longpfreq Fluency Delivery 
Frequency of longer pauses (>=0.5 

seconds) 

*18 longpmn Fluency Delivery Mean duration of long pauses 

*19 longpwd Fluency Delivery 
Frequency of longer pauses divided 

by number of words 

20 longpmeandev Fluency Delivery Mean deviation of long pauses 

21 silstddev Fluency Delivery Standard deviation of silence duration

22 longpstddev Fluency Delivery Standard deviation of long pauses 
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23 numdff Fluency Delivery Number of disfluencies (filled pauses)

24 dpsec Fluency Delivery Disfluencies per second 

25 repfreq Fluency Delivery 
Number of repetitions divided by 

number of words 

*26 tpsec 
Fluency & 
Vocabulary 

diversity 

Delivery & 
Language 

use 

Types per second (types are unique 
words) 

*27 tpsecutt 
Fluency & 
Vocabulary 

diversity 

Delivery & 
Language 

use 
Types divided by uttsegdur 

*28 amscore Pronunciation Delivery 
Global HMM acoustic model score 

(normalized) 

*29 lmscore 
Grammatical 

accuracy 
Language 

use 
Global language model score 

(normalized) 

Notes:  
(1) Mean deviation is computed as the mean of the absolute differences between feature values 
and the mean of all feature values.  
(2) The terms “pauses” and “silences” are synonymous here. 
(3) In all cases where the denominator would be zero (0.0), the respective value of a feature or 
component of a feature is also set to zero (0.0). 
 

Since one of our scoring model methods is multiple regression, we have to 

address the fact that the features we have developed for speech scoring may not conform 

to this model’s assumptions, notably the assumption of a linear relationship between the 

features and the score, and the assumption that the error term in the regression equation 

be normally distributed.  To address this possibility, we examined the distribution of each 

of our features, and considered transformations of the features which might improve the 

correlation between the feature and the item score to be predicted, as well as making the 

feature’s distribution more normal.  We limited ourselves to basic transformations such 

as “inverse”, “square”, “square root”, or “logarithm”. (Since CART trees are not making 

any assumptions on normality of feature distributions, only features used in multiple 

regression scoring models were transformed.) 

Table 7 shows the change in correlations between the features, which were 

transformed, and human scores before and after these transformations. 
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Table 7 

Changes in correlation before and after the transformation  
Correlations with human 
scores  

Feature  Transformation 
performed 

Original Transformed 
Wdpchk Natural log (wdpchk+1) .106 .222 
Amscore Inverse -.445 .510 
Lmscore Inverse -.295 .282 
wdpchkmeandev Inverse .097 -.248 

 
Finally, also only for multiple regression, outliers were defined as feature values more 

than 4 standard deviations from the mean; these values were mapped to this boundary (+- 

4 standard deviations from the mean). The same procedures (transformations and outlier 

handling) were also applied to the test data for the evaluation of the scoring model. 

For the regression model, all features were further normalized to a standard Gaussian 

distribution with mean of 0 and standard deviation of 1. 

 
8. Scoring Models 

 

We explored two types of scoring models: Classification and regression trees 

(CART), and multiple regression (MR). 

A  main advantage of CART is that trained trees can be seen as mirroring the decision 

behavior of human raters to some extent, whose scoring results can be directly 

reconstructed as a sequence of decisions. Also, CART is not sensitive to feature outliers 

or non-normal feature distributions. 

The main advantages of MR, on the other hand, are its much simpler design and 

much longer history of being used for automated scoring purposes (such as, e.g., in e-

rater® (Attali and Burstein, 2005)). The relationships between the features and the 

predicted scores are straightforward, as well as the relative weights of the features, and so 

it may be more perspicuous to an outsider than a CART model. 

 
8.1 Multiple regression  

 

Our aim in developing the SpeechRater multiple regression model was to produce a 

model with high agreement with human raters, but also to structure the model so that its 
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use of our predictive features is in conformance with our understanding of the concept of 

communicative competence – the selected features should cover a wide range of aspects 

of communicative competence. Further, the feature weights should reflect the relative 

importance of different aspects of communicative competence and also should have a 

correct direction of association, i.e., if higher feature values correspond to higher 

proficiency, the feature weight has to be positive. 

In a first step, we built a preliminary MR model using the 11 selected features 

described above. Then we determined a sub-set of these features in consultation with the 

content advisory committee (CAC) who also assisted in determining the feature-specific 

weights (see Equation 1), using the weights of the initial MR model as guidance. The 

CAC is a group of content-area specialists convened to ensure the appropriateness of our 

scoring model design for the concept of communicative competence. 

We standardized the feature values (to zero mean and unit variance) so that the CAC 

weights assigned were comparable across all features.  These standardization parameters 

(the mean and variance of the feature as observed in the training data) were retained for 

scaling of the features in the test samples as well. 

Based on our initial MR model, the CAC agreed on the use of a model with the 

features amscore, wpsec, tpsecutt, wdpchk, and lmscore.  This set of features was deemed 

to provide the widest range of coverage of the different aspects of the speaking construct, 

and could be weighted in such a way that the relative importance of each of these 

measures was represented.     

To compute the final MR model, we wanted the feature weights to be fixed a priori to 

the values chosen by the CAC and so we restructured the standard regression equation, 

shown here (Equation 1):   

(1) i i
i

Score f   . 

This original equation has a set of free parameters αi associated with each scoring 

feature fi.  Our modified equation still has a parameter i   associated with each feature, 

but these parameters are not allowed to vary in the optimization of the model for a given 
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training set.  The only two parameters which need to be learned from the data are the 

slope parameter μ, and the intercept β (Equation 2): 

(2) i i
i

Score f    . 

 

 

 

Table 8 below provides the feature class and dimension represented by each of the 

features used, together with their weights in the regression model. 

 
Table 8 

Features used in CAC regression model 

Feature Weight Feature class Dimension  
Amscore 4 Pronunciation Delivery  
Wpsec 2 Fluency Delivery  
Tpsecutt 2 Vocabulary, 

Fluency 
Delivery & 
Language Use  

Wdpchk 1 Fluency Delivery  
Lmscore 1 Grammar Language Use  

 
We fixed the weights i   of the standardized features to the CAC-defined values 

shown in Table 8 above, and trained the model using the TPO scoring model training data 

(sm-train).  This involved setting the model slope parameter μ and intercept β to 

minimize the least-squares error on this training data.   

As mentioned earlier, one shortcoming of just using the TPO sm-eval set for 

evaluation is that it does not allow a direct estimation of the correlation of predicted 

scores with human-assigned scores on a full complement of six tasks, which is the level 

of the score we wish to report (since there are six tasks in the TOEFL iBT Practice 

Speaking test).  There were only 58 candidates with complete sets of six task scores in 

this evaluation set.  To address this deficiency, we performed the evaluation run on the 

combined data from the TPO sm-eval and rec-train sets.  This combined set of 
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evaluation data contained many more (308) complete sets of six tasks per candidate than 

the sm-eval set alone.8   

 

8.2 CART trees  

 

CART 5.0 (Steinberg & Colla, 1997) was used to build the classification trees.  We 

used all 11 selected features described above and explored different model 

configurations, i.e., different combinations of priors and splitting rules.  For each 

combination, a 10-fold cross-validation was conducted.  Subsequently, the optimal sub 

tree that was a relatively small tree with the highest or near-highest agreement with the 

human scores (weighted kappa) on the cross-validation sample was identified. Mixed 

priors (average of equal priors and training sample priors) with the Gini splitting rule9 

gave comparable weighted kappas with the human scores on the cross-validation sample, 

among all the combinations.  Then the sm-eval sample cases were dropped down the best 

tree to obtain the classification rates. The best tree contained only 5 features, which were 

automatically selected by the CART learning procedure. 

 

8.3 Model performance  

 

In Table 9, the agreement results between MR and CART scoring models with human 

scores are broken down into four sections – groups of one, two, three and six task scores 

(grouped always from one examinee). 

                                                 
8 Strictly speaking, however, there is a methodological issue with doing the evaluation this way.  Since the 
data from the rec-train set was used to train the speech recognizer, it is possible that some of the learning 
from this stage (relative probabilities of word sequences and pronunciation variants) might cause the 
scoring model to perform uncharacteristically on this particular set of data.  In practice, however, this 
seems unlikely, given that our feature set abstracts away from the actual hypothesized word sequence 
returned by the recognizer.  While the lmscore and amscore features do use information about the internal 
state of the recognizer, and therefore could be affected by the use of a particular response in recognizer 
training, we expect this effect to be small. 
 
9 The Gini splitting rule aims to get pure terminal nodes as soon as it can. It is the default splitting rule 
implemented in CART since it typically performs the best. However, given specific circumstances and data 
characteristics, other splitting rules can generate more accurate models. 
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This table also includes results for the iBT Field Study data set (smFS-eval) as a 

comparison. This data set has a more even score distribution than TPO, but does have 

overlap in items between smFS-train and smFS-eval. Also, hypotheses were generated 

with a different recognizer due to a different audio format and no corpus-specific 

adaptation could be performed due to a lack of transcribed data. 
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Table 9 

CAC Regression model and CART performances on TPO Evaluation + Recognizer Train set, and iBT Field Study data set 
 

  Multiple regression model (CAC weights) 
CART model (mixed priors, Gini 

splitting) 

Sets of scores Evaluation method 
TPO Eval + Recognizer 

Training Set 
iBT Field Study 

Test set 

TPO Eval + 
Recognizer Training 

Set 

iBT Field Study 
Test set 

Weighted κ 0.33 0.51 0.43 0.59 
Exact Agreement 57.8% 44.2% 50.5% 50.6% 

Exact + adjacent agreement 98.4% 95.1% 94.8% 93.3% 
Mean (SD) of predicted score 2.79 (.37) 2.45 (.61) 2.88(.80) 2.47(.92) 

Correlation (unrounded) 0.47 0.61 NA* NA 

Single score 

Correlation (rounded) 0.37 0.55 0.44 0.62 

Weighted κ 0.45 0.58 0.49 0.66
Correlation (unrounded) 0.53 0.66 NA NA Pairs of scores 

Correlation (rounded) 0.50 0.64 0.50 0.66 

Weighted κ 0.48 0.61 0.53 0.68
Correlation (unrounded) 0.56 0.68 NA NA Triples of scores 

Correlation (rounded) 0.54 0.67 0.54 0.68 

Weighted κ 0.51 0.61 0.55 0.69
Correlation (unrounded) 0.57 0.68 NA NA Sets of six scores 

Correlation (rounded) 0.57 0.68 0.57 0.70 
*CART predicts only integer scores by design; therefore, no “unrounded” scores exist that a correlation can be computed on. 
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8.3.1 MR analysis 

While different measures for scoring quality are presented in Table 9, we choose  the 

Pearson r correlation of the predicted scores with the human-assigned scores as our main 

evaluation metric. While exact and adjacent agreement measures can provide important 

information on the score overlap between automatic and human scores, it does not tell 

anything about the magnitude of errors outside of the agreement window. Furthermore, in 

cases with scales of very few score points such as in TPO (only four points), a high 

agreement is easily achievable. In particular, exact agreement is highly sensitive to the 

distribution of human ratings (the majority class baseline).  If these are highly skewed, a 

high agreement figure might not reflect any sophistication on the part of the automated 

scoring system, but only a statistical artifact of the composition of the data. 

 In contrast, correlation is a more global metric which looks at distributional 

differences between all scores while ignoring consistent differences in the means between 

automatic and human scores, unlike for the exact agreement metric. 

In our MR evaluations, Pearson r correlation ranges from 0.37 for single items to 0.57 

for sets of six tasks for TPO and from 0.55 to 0.68 for the iBT Field Study.  (We report 

correlations for rounded scores for better comparison with CART where all scores are 

integer in the first place.) As a comparison, the inter-human correlations are 0.55 for 1 

item and 0.74 for six items for TPO data and 0.77 for 1 item and 0.94 for three items for 

the field study data. 

Note also that there is less variation in SpeechRater’s score estimates --- the standard 

deviation of predicted scores is considerably lower than the standard deviation of human-

assigned scores.  This is partially due to the uneven distribution of task scores in the 

training data (with almost half the tasks receiving a score of 3), but may also have to do 

with inconsistency in the human scoring of these responses, and with the limited range of 

coverage of the concept of communicative competence in our feature set (emphasis on 

fluency features). 

 

8.3.2 CART analysis 
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The optimal tree using the mixed priors and the Gini splitting rule contains features that 

partition the sm-train cases into different score classes at certain splitting values.  

Conceptually, the splitting features and values define the boundaries of different score 

classes.  This is analogous to using responses that represent the lower and upper ends of a 

score class as range finders typically used in rater training.  

Five features were present in the tree: amscore, wpsec, wdpchk, silmean and lmscore.  

The first one was a pronunciation feature (Delivery), the second through the fourth 

fluency features (Delivery) and the last one a grammar feature (Language Use).  Not too 

surprisingly, we see a strong similarity between these CART features and those used in 

the multiple regression scoring model – amscore, wpsec, wdpchk, and lmscore occur in 

both models, whereas tpsecutt only occurs in MR and silmean only in CART, 

The decision rules that led to the terminal nodes are summarized below in Table 10. 

 
Table 10 
CART decision rules for different score classes (1-4) 

Score 
class  

Rule # Rule 

Rule 1 440.7 <Amscore <=748.4, Longpmn>1.02, 
Wdpchk<=4.6 

Rule 2 440.7 <Amscore <=748.4, Longpmn>1.02, 
Wdpchk>=4.6, Silmean>1.1 

Score 
class 1 

Rule 3 Amscore > 440.7 
Rule 1 392.9 < Amscore <=440.7, Wpsec<=2.8, 

Lmscore > 69.2 
Rule 2 440.7 <Amscore <=748.4, Longpmn <= 1.02 

Score 
class 2 

Rule 3 440.7 <Amscore <=748.4, Longpmn>1.02, 
Wdpchk>=4.6, Silmean <=1.1 

Rule 1 Amscore <=440.7, Wpsec<=2.8 Score 
class 3 Rule 2 392.9 < Amscore <=440.7, Wpsec>2.8, 

Lmscore < = 69.2 
Score 
class 4 

Rule 1 Amscore <=392.9, Wpsec>2.8 

 

These decision rules were considered by the CAC members to be reasonable.  The 

different scoring rules for each score class were also deemed to be consistent with some 

of the typical profiles of students at a particular score level. 
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The CAC members also noted that some other features, such as vocabulary 

sophistication and precision features, and coherence and content relevance features, if 

available, may improve the accuracy in partitioning the cases into the right score classes.   

 

8.4 Model selection 

 

While the results we observed do not clearly favor either CART or MR, the final 

decision was made in favor of the MR model due to its greater simplicity, parsimony, and 

stability and (hence) easier defensibility towards the outside world. MR needs fewer 

training instances than CART for a stable model and is more easily modifiable in terms 

of adapting it to shifting means and variances due to changes in the test population. 

 

9. Discussion 

 

We have presented a system called SpeechRater for scoring non-native spontaneous 

speech in the context of an online English language testing program (TOEFL Practice 

Online Speaking). The system consists of three major components, the speech recognizer, 

the feature computation module, and the scoring model. The paper discusses each of 

these three stages of the system and provides motivations for the design decisions we 

made. 

An important aspect of this work is that the features selected for the scoring model 

should not only have good statistical properties in terms of having high correlations  with 

human rater scores, but at the same time should achieve as broad as possible a coverage 

of the concept of communicative competence. We see this work as a first step in a long-

term process, where, over time, more features will be developed and added to the scoring 

model such that eventually all dimensions of communicative competence (delivery, 

language use, and topical development) are reasonably covered. One of the main 

challenges in this endeavor, as we move from low-level fluency features to higher-level 

features such as grammar, vocabulary, or content, is that those features rely on correct 

word identities to a much larger extent than the features we are using so far. This means 
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that a substantial increase in the word accuracy of our recognizer will be mandatory for 

acceptable performance of these features and the overall system. We envision different 

ways of both acoustic and language model adaptation, e.g., adaptation to examinee 

responses to a particular task, which could aid in this effort of improving the recognizer’s 

performance. Preliminary work on a related corpus with different methods of adaptation 

and other optimizations has already shown promising results. 

Other challenges are much harder to address, e.g., the skewed score distribution in the 

TPO data set, which is likely one of the main reasons why both human agreement and 

automatic score predictions are worse than for the more evenly distributed iBT Field 

Study data set. We believe that the reason for the data skewedness is that speakers with a 

very high proficiency are likely aware of this and see no need in taking a practice test 

whereas speakers with a very low or moderate-low proficiency do not think that they can 

reasonably profit from such an exercise.  

In terms of score prediction performance, the two models we evaluated, CART and 

MR yield comparable results overall. The gap between inter-human correlation and 

automatic performance in terms of Pearson r for all 6 items of a test is about 0.17 for the 

TPO data set and still higher for the iBT Field study set. As this difference is of moderate 

magnitude for TPO data, Condition 2 of Section 1 was considered to be met. Condition 1, 

the appropriateness of the features in the scoring model in terms of covering the concept 

of communicative competence, was judged to be moderate, but adequate for a low-stakes 

practice test, such as the TPO, particularly in light of the known high correlations 

between the three dimensions of the TOEFL Speaking rubrics (delivery, language use, 

and topical development) (Xi and Mollaun, 2006). The five features of the multiple 

regression scoring model cover mostly aspects of delivery (fluency, pronunciation), but 

also aspects of language use (grammatical accuracy and vocabulary diversity), 

Future work will focus on developing additional features and improving the speech 

recognizer to close this performance gap between machine scores and human agreements.  

 

10. Summary and Future Work 
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This paper has demonstrated the feasibility of automatic scoring of spontaneous non-

native speech in a practice environment (TOEFL Practice Online Speaking), where the 

system used for scoring is composed of three main components, the speech recognizer, 

the feature computation module, and the scoring model. Two different corpora from 

related tests of English were used for system development and testing: the TOEFL 

Practice Online Speaking corpus and the TOEFL iBT Field Study corpus. From a set of 

29 initial features, five were eventually used by our two scoring models, multiple 

regression and CART trees.  (The feature sets were almost identical with an overlap of 4 

of 5 features). Since we are reporting scores for overall performance of a complete test, 

results for grouping all six tasks of a form together were most interesting to us. The 

multiple regression correlations for TPO were 0.57 and for iBT around 0.68, compared to 

inter-human agreement rates of 0.74 and 0.94 (on three tasks), respectively. We decided 

to pick the multiple regression scoring model for the operational system since it is 

simpler and more perspicuous than CART tree models. The operational system has been 

online since the fall of 2006 and has scored tens of thousands of practice tests to date. 

Future work will focus predominantly on two areas: (a) extending the feature set to 

allow for broader coverage of the concept of communicative competence; and (b) 

substantially improving the word accuracy of the speech recognizer by various methods 

of adaptation. 

 
 
References 

Attali, Y., & Burstein, J. (2004). Automated essay scoring with e-rater V.2.0. Presented at the 

Annual Meeting of the International Association for Educational Assessment, 

Philadelphia, PA 

Attali, Y., & Burstein, J. (2005). Automated essay scoring with e-rater V.2.0 (ETS RR-04-45). 

Princeton, NJ: Educational Testing Service. 

Bachman, L. F. (1990). Fundamental considerations in language testing. Oxford: Oxford 

University Press. 



 31

Bachman, L. F. and Palmer, A. (1996). Language testing in practice: Designing and developing 

useful language tests, Oxford, Oxford University  

Bernstein, J. (1999). PhonePass testing: Structure and construct. Menlo Park, CA: Ordinate 

Corporation 

Bernstein, J., DeJong, J., Pisoni, D., and Townshend, B. (2000). Two experiments in automatic 

scoring of spoken language proficiency. Proceedings of InSTILL2000, Dundee, Scotland. 

Brieman, L., Jerome F., Olshen, R., & Stone, C. (1984). Classification and regression trees. 

Pacific Grove: Wadsworth.  

Burstein, J., Kukich, K., Braden-Harder, L., Chodorow, M., Hua, S., Kaplan, B., Lu, C., Nolan, J, 

Rock, D, Wolff, S. (1998). Computer analysis of essay content for automated score 

prediction: A prototype automated scoring system for GMAT analytical writing 

assessment (ETS RR-98-15). Princeton, NJ:  Educational Testing Service. 

Chodorow, M., & Burstein, J. (2004). Beyond essay length: Evaluating e-rater's performance on 

TOEFL essays, (TOEFL Research Report No. RR-73, ETS RR-04-04). Princeton, NJ: 

Educational Testing Service.  

Clauser, B. E., Margolis, M. J., Clyman, S. G. & Ross, L. P. (1997). Development of automated 

scoring algorithms for complex performance assessments: A comparison of two 

approaches. Journal of Educational Measurement, 34, 141-161. 

Cohen J. (1968). Weighted kappa: Nominal scale agreement with provision for scaled 

disagreement or partial credit. Psychological Bulletin. 70, 213-20.  

Cucchiarini, C., Strik, H., & Boves, L. (1997a). Automatic evaluation of Dutch pronunciation by 

using speech recognition technology. Paper presented at the IEEE Automatic Speech 

Recognition and Understanding Workshop, Santa Barbara, CA. 

Cucchiarini, C., Strik, H., & Boves, L. (1997b). Using speech recognition technology to assess 

foreign speakers' pronunciation of Dutch. Paper presented at the Third international 

symposium on the acquisition of second language speech: NEW SOUNDS 97, 

Klagenfurt, Austria. 



 32

Cucchiarini, C., Strik, H. & Boves, L. (2000a). Different aspects of expert pronunciation quality 

ratings and their relation to scores produced by speech recognition algorithms, Speech 

Communication, 30 (2-3), pp. 109-119   

Cucchiarini, C., Strik, H. & Boves, L. (2000b). Quantitative assessment of second language 

learners' fluency by means of automatic speech recognition technology. Journal of the 

Acoustical Society of America, 107, 989-999.  

Cucchiarini, C., Strik, H.  & Boves, L. (2002). Quantitative assessment of second language 

learners' fluency: Comparisons between read and spontaneous speech, Journal of the 

Acoustical Society of America, Vol. 111 (6), pp. 2862-2873  

Franco, H., Abrash, V., Precoda, K., Bratt, H., Rao, R., & Butzberger, J. (2000a). The SRI 

EduSpeak system: Recognition and pronunciation scoring for language learning. 

Proceedings of InSTiLL-2000 (Intelligent Speech Technology in Language Learning), 

Dundee, Scotland.  

Franco, H., Neumeyer, L., Digalakis, V. & Ronen, O. (2000b). Combination of Machine Scores 

for Automatic Grading of Pronunciation Quality, Speech Communication, 30:121-130.  

Landauer, T.K., & Dumais, S.T. (1997). A solution to Plato's problem: The Latent Semantic 

Analysis theory of the acquisition, induction, and representation of knowledge. 

Psychological Review, 104, 211-240. 

Leacock, C. (2004). Scoring free-responses automatically: A case study of a large-scale 

assessment. Examens, 1(3).  

Leacock, C., & Chodorow, M. (2003). C-rater: Scoring of short-answer questions. Computers and 

the Humanities, 37(4), 389-405.  

Linguistic Data Consortium.(LDC) (1997). HUB-4 Broadcast News corpus (English). 

Neumeyer, L.. Franco, H., Digalakis, V. & Weintraub, M. (2000). Automatic Scoring of 

Pronunciation Quality, Speech Communication, 30:83-93. 

North, B. (2000). The Development of a Common Framework Scale of Language 

Proficiency. New York, NY: Peter Lang. 



 33

 

Page, E. B. (1966). The imminence of grading essays by computer. Phi Delta Kappan, 47, 238–

243. 

Rudner, L.M., Garcia, V., & Welch, C. (2006).  An evaluation of the Intellimetric essay scoring 

system.  Journal of Technology, Learning and Assessment, 4(4).  Retrieved  from 

http://www.jtla.org. 

Steinberg, D., & Colla, P. (1995). CART: Tree-Structured Non-Parametric Data Analysis. San 

Diego, CA: Salford Systems.  

Williamson, D. M., Bejar, I. I., & Hone, A. S. (1999). "Mental model" comparison of automated 

and human scoring. Journal of Educational Measurement, 36, 158–184. 

Xi, X. & Mollaun, P. (2006). Investigating the Utility of Analytic Scoring for the TOEFL® 

Academic Speaking Test (TAST). TOEFL iBT Research Report No. TOEFLiBT-01 

Zechner, K., & Bejar, I. (2006). Towards automatic scoring of non-native spontaneous speech. 

Proceedings of the 2006 Conference on Human Language Technology and the North-

American Association for Computational Linguistics (HLT-NAACL-06), New York, 

NY. 

 


