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Abstract 

This report presents the results of a research and development effort for SpeechRaterSM Version 

1.0 (v1.0), an automated scoring system for the spontaneous speech of English language learners 

used operationally in the Test of English as a Foreign Language™ (TOEFL®) Practice Online 

assessment (TPO). The report includes a summary of the validity considerations and analyses 

that drive both the development and the evaluation of the quality of automated scoring. These 

considerations include perspectives on the construct of interest, the context of use, and the 

empirical performance of the SpeechRater in relation to both the human scores and the intended 

use of the scores. The outcomes of this work have implications for short- and long-term goals for 

iterative improvements to SpeechRater scoring. 

Key words: Automated scoring, automatic speech recognition, automatic speech processing, 

TOEFL, TOEFL Practice Online, and validity argument  
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Executive Summary 

SpeechRaterSM Version 1.0 (v1.0) is an automated scoring system deployed for the Test of 

English as a Foreign Language™ (TOEFL®) Internet-based test (iBT) Speaking Practice Test, 

which is used by prospective test takers to prepare for the official TOEFL iBT test. This study 

reports the development and validation of the system for low-stakes practice purposes. The 

process we followed to build this system represented a principled approach to maximizing 2 

essential qualities: substantively meaningful and technically sound. In developing and evaluating 

the features and the scoring models to predict human assigned scores, we engaged both content 

and technical experts actively to ensure the construct representation and technical soundness of 

the system. We compared primarily two alternative methodologies of building scoring models—

multiple regression and classification trees—in terms of their construct representation and 

empirical performance in predicting human scores. Based on the evaluation results, we 

concluded that a multiple regression model with feature weights determined by content experts 

was superior to the other competing models evaluated.  

We then used an argument-based approach to integrate and evaluate the existing evidence 

to support the use of SpeechRaterSM v1.0 in a low-stakes practice environment. The argument-

based approach provided a mechanism for us to articulate the strengths and weaknesses in the 

validity argument for using SpeechRater v1.0 and put forward a transparent argument for using it 

for a low-stakes practice environment. In particular, the construct representation of the multiple 

regression model with expert weights was sufficiently broad to justify its use in a low-stakes 

application. While some higher-order aspects of the speaking construct (such as content and 

organization) are missing, more basic aspects of the construct (such as pronunciation and 

fluency) are richly represented. In addition, these different parts of the speaking construct tend to 

be highly correlated, so that the absence of higher order factors is not as detrimental to the 

model’s agreement with human raters as it otherwise might be. The model’s agreement with 

human raters was not sufficiently high to support high-stakes decisions but was still suitable for 

use in low-stakes applications. The correlation of the 6-item aggregate score with human raters 

was .57 and was deemed acceptable given the low human agreement and the fact that we 

obtained a much higher correlation of .68 on data with more variability in the scores, such as the 

iBT field study data. Furthermore, the dependability of the scores predicted by the final scoring 
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model was quite high for the 6 tasks, supporting the high degree of generalizability of scores 

across tasks.  

We also identified gaps in our existing research for SpeechRater v1.0. Specifically, the 

areas of research to pursue include improving the prediction accuracy for the whole test-taking 

population and for test takers with different native language backgrounds and expanding the 

construct coverage of the scoring model. Furthermore, we need to explore alternative criterion 

measures other than human scores to validate the scores provided by SpeechRater. Other critical 

areas of investigation include users’ perceptions of and interactions with this system and the 

impact of users’ perceptions on their decision making based on the scores.   
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1. Introduction 

The multiple-choice item has flourished as the preferred item type for more than a 

generation, and with good reason. It is efficient to develop and administer, can be scored 

relatively unambiguously and swiftly, and is supported by a rich infrastructure of statistical 

methods and test theory. Include the increasing availability and lower cost of online 

administration and instantaneous scoring and it is no mystery why item types other than multiple 

choice are often not even considered as options for an assessment program.  

Despite all these factors in favor of multiple choice, many areas of ability remain for 

which multiple-choice items alone are believed to result in an incomplete representation of the 

construct. For assessment of these constructs the choices traditionally have been to accept a swift 

and efficiently scored measure of a construct considered to be somewhat ill-fitting, using 

multiple-choice items alone, or to accept the slower and more costly human scoring that 

accompanies use of constructed-response items. Despite research into automated scoring of 

complex tasks extending back more than 40 years (e.g., Page, 1966), only relatively recently 

(Burstein et. al., 1998; Clauser, Margolis, Clyman, & Ross, 1997; Williamson, Bejar, & Hone, 

1999) has the ability for computerized delivery and automated scoring of constructed-response 

items enabled the practical operational use of automated scoring for such items. Initially, such 

applications were primarily in automated scoring of essays (e.g., Attali & Burstein, 2006; 

Burstein et al., 1998; Chodorow & Burstein, 2004; Landauer & Dumais, 1997; Rudner, Garcia, 

& Welch, 2006), which has matured to a considerable degree. However, recent research in 

natural language processing and speech recognition capabilities has expanded the nature of 

constructed-response tasks that are automatically scorable to include short-answer tasks requiring 

factual information (e.g., Leacock & Chodorow, 2003) and tasks eliciting highly predictable 

speech (e.g., Bernstein, 1999).  

This report presents the results of a research and development effort for SpeechRaterSM 

Version 1.0 (v1.0), an automated scoring system for the spontaneous speech of English language 

learners used operationally in the Test of English as a Foreign Language™ (TOEFL®) Practice 

Online assessment (TPO). This includes a summary of the validity considerations and analyses 

that drive both the development and the evaluation of the quality of automated scoring. These 

considerations include perspectives on the construct of interest, the context of use, and the 

empirical performance of the SpeechRater v1.0 automated scoring engine in relation to both the 
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human scores and the intended use of the scores. The outcomes of this work have implications 

for short- and long-term goals for iterative improvements to SpeechRater scoring.  

We start with the validation framework used for evaluating SpeechRater v1.0 (Section 2). 

We then describe the architecture of SpeechRater v1.0, its major components (Section 3). 

Following that, we describe the various data sets used in this study and discuss the development 

and validation efforts associated with each of the three components (Sections 4–8). In Section 9, 

we summarize and synthesize different lines of development and validation work presented in 

Sections 4–8 to support the validity of SpeechRater v1.0 and make a recommendation for using 

SpeechRater on a conditional basis. We conclude Section 9 by discussing the critical areas of 

future research that support enhancements of SpeechRater.  

2. Validation Framework for SpeechRater v1.0 

Validity Framework for Automated Scoring 

Fundamentally, the validity considerations around the use of automated scoring in an 

assessment are no different from those for assessments that rely on human scoring of 

constructed-response items, or even those that use only multiple-choice items. The same 

obligations to ensure that the reported scores are appropriate for the assessment purpose persist, 

regardless of the mode of scoring or the type of item. However, automated scoring is often 

dependent on a complex set of technological mechanisms and algorithms for the production of a 

task score. This fact implies a greater responsibility to conduct a more thorough, critical 

evaluation of the quality of scoring than is typical (rightly or wrongly) for human scoring of 

similar tasks (a review of such validation efforts for automated scoring can be found in Yang, 

Buckendahl, Juszkiewicz, & Bhola, 2002). Therefore, we begin by integrating the considerations 

that are particular to automated scoring into a framework for validating an assessment as a 

whole, with an emphasis on the unique challenges and threats to validity of test scores specific to 

the application of automated scoring. What follows is a brief discussion of concepts and views of 

validation that have shaped our conceptualization and execution of the work conducted to 

validate the SpeechRater v1.0 scoring for use in the TPO assessment.  

Validity and validation are fundamental notions in psychometrics and the subject of many 

papers, journal articles, and book chapters (e.g., Cronbach, 1971; Cureton, 1951; Kane, 2006; 

Messick, 1989). Validity is a theoretical notion that establishes the conceptual and empirical 

relationship between an assessment and its intended use. As such, it defines the expected 
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meaning of a test score in relation to the construct or criterion the assessment is intended to 

represent and therefore the scope and nature of work required in order to establish the 

fundamental utility of assessments for their intended purpose. Validation is the process of 

developing and evaluating the evidence for and against the hypothesis that the assessment results 

are meaningful and appropriate for its intended use. Given the many perspectives and 

frameworks for validity and validation, it would be overly ambitious to present a full discussion 

of the considerations for automated scoring within each current or historical perspective. Instead, 

we adopt the position that the validation of automated scoring is, in general, an area of special 

consideration within the overall field of validity theory and practice in measurement. As a result, 

regardless of the overall validation framework adopted, there is a need for special consideration 

of the role of automated scoring within the chosen framework.   

Most frameworks for validity emphasize (and rightly so) the validation of the reported 

scores from a test as the basis for supported decision making. As such, validation frameworks in 

general tend to focus on the basis for inferences (test scores) from assessment rather than on the 

fundamental elements of evidence (item scores) that contribute to the overall inference. Prior 

studies have tended to emphasize one or more of three approaches: (a) demonstrating the 

correspondence (in both agreement and reliability) in item-level scores between automated 

scoring systems (either a single system or multiple independent systems) and human scorers, (b) 

examining the relationship between item-level automated scores and criterion measures external 

to the assessment, and (c) understanding the construct represented within the scoring processes 

that automated scoring systems use (Yang et al., 2002). With few exceptions, these focus on 

item-level evaluations and restrict their scope to one of these three approaches to validation. 

Some have advocated the incorporation of multiple approaches into formal validity arguments 

for the overall assessment in a manner consistent with a more comprehensive validation strategy 

(e.g., Bennett & Bejar, 1998; Clauser, Kane, & Swanson, 2002). However, few, if any, have yet 

undertaken such comprehensive analyses combining both conceptual and empirical approaches 

to the extent advocated in these presentations.  

In this evaluation of SpeechRater automated scoring for the TPO assessment, we adopt a 

conceptual validation framework presented by Clauser et al. (2002), within which the three areas 

of investigation mentioned above are integrated into a coherent evaluation of the appropriateness 

of scores produced by an automated scoring engine. This framework presents an argument-based 
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approach to the validation of an assessment that uses automated scoring and is consistent with 

current argument-based presentations of validation (e.g., Kane, 1992, 2001, 2002, 2004; Kane, 

Crooks, & Cohen, 1999) that evolved from ideas presented by Cronbach (1988) and Messick 

(1989). Drawing on argumentation theories stemming from Toulmin logic (Toulmin, 2003), the 

current argument-based approach to validation has formalized the process of building and 

supporting arguments, thus offering a working framework for practitioners. Another application 

of Toulmin’s argumentation theories is the evidence-centered design framework, which provides 

useful guidance for designing assessments in a principled way (Mislevy, Steinberg, Almond, & 

Lukas, 2006). The evidence-centered design approach provides a mechanism for building 

validity into an assessment from the outset, but a principled approach to assessment design is not 

sufficient to establish validity, which is best investigated within Kane’s validation framework 

(Mislevy et al., 2006). In Kane and his associates’ framework, validation is represented as a two-

stage process consisting of the construction of an interpretive argument followed by the 

development and evaluation of a validity argument consistent with the interpretation.  

Execution of a validation strategy within this framework begins with an articulation of 

the interpretive argument for each intended use of a test through a formal representation of the 

chain of inferences linking test performance to a decision, and the assumptions upon which these 

inferences rest. The stated assumptions, if supported through investigation, lend support for the 

pertinent inference. The inferences at the item level for such a representation are relatively 

modest. However, as the logical sequence progresses through the chain of inferences, each 

subsequent step results in inferences of greater and greater significance, and a correspondingly 

greater burden of evidence is required to support the inference, until the final inference of overall 

score or evaluation is represented. Theoretical, empirical, and procedural evidence of validity is 

used at each stage of the chain of inference to both question and support the assumptions that are 

required at that stage, with the emphasis shifting from conceptual and procedural at the more 

fine-grained levels (e.g., item level) to more empirical and rigorous at the level of the summary 

scores. The plausibility of the interpretive argument proposed for the assessment as a whole is 

based on this cumulative validity argument using theoretical and empirical evidence across the 

span of the chain of evidence. A strength of this approach lies in providing a transparent working 

framework to guide practitioners in three areas: (a) prioritizing different lines of evidence, (b) 

synthesizing them to evaluate the strength of a validity argument, and (c) gauging the progress of 
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validation efforts. This approach also allows for a systematic way to consider potential threats to 

the assumptions and inferences and allocate resources to collect evidence intended to discount or 

reduce the impact of such threats.  

Within this framework the validation of automated scoring is properly positioned as one 

specially targeted component of the overall validity argument for an assessment. Specifically, 

validation of automated scoring is a subset of the overall set of validation efforts. The evidence 

that automated scoring is an appropriate methodology at the item level and the test level supports 

the validity of the automated scores; this evidence must also be integrated into the overall 

argument for the validity of the assessment as a whole. As such, using this framework for 

validation positions, even demands, the work on automated scoring to be nested within 

considerations that extend beyond automated scoring to the other elements of an assessment 

design (e.g., Bennett & Bejar, 1998; Yang et al., 2002). Adopting the Clauser et al. (2002) 

framework provides an inherent representation of how decisions made in developing an 

automated scoring system may strengthen or weaken the overall validity argument, given the 

particular approach used to develop the system. This approach also allows for an explicit 

representation of potential threats to the strength of each inference in the chain that may be 

introduced by automated scoring and of lines of research that would alleviate or substantiate such 

threats. Although Clauser et al. (2002) did not cover all potential validity issues in validating a 

particular automated scoring system, they provided a useful working model for weaving the 

concerns directly associated with validation of automated scoring per se into this network of 

inferences, leading to a validity argument for the intended interpretation and use of test scores. 

Consequently, we have adopted this perspective in the current work. We will outline the role of 

this validation work on SpeechRater automated scoring within the overall validity argument for 

the TPO assessment in a subsequent section. However, before presenting the details of the 

validity study design for SpeechRater automated scoring for the TPO assessment, we first 

provide a brief summary of the assessment, including the desired claims and assessment 

structure, as the context for this research and the basis for positioning this effort within the 

overall validity framework for TPO per Clauser et al. (2002).  

The TPO Assessment  

The speaking section of the TOEFL Internet-based test (iBT) is designed to measure the 

academic English-speaking abilities of nonnative speakers who plan to study at English-medium 
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institutions for higher education. Using tasks that require language use typical of an academic 

environment, the TOEFL iBT Speaking test represents an important advancement in the large-

scale assessment of productive skills. However, it poses challenges to learners in parts of the 

world where opportunities to practice speaking English are limited.  

The TPO assessment is designed to help prospective TOEFL iBT examinees become 

familiar with and better prepared for the test. As such, it is designed to mirror the content and 

design characteristics of the TOEFL iBT to the extent possible in an economical practice 

environment. As such, the various sections of the TPO each have the same number of items, 

same mixture of content represented, and same item types that appear in the operational TOEFL. 

In fact, all of the items that are used for the TPO are retired operational TOEFL iBT items. 

However, unlike the TOEFL iBT, the TPO allows users to customize their practice and take the 

test in a timed or untimed mode. The timed mode attempts to replicate the operational testing 

experience by using the same online delivery system and timing restrictions of the TOEFL iBT. 

In the untimed mode, users can progress at their own pace, starting or stopping the test whenever 

they like and revisiting items if desired. Another important distinction between the TPO and the 

TOEFL iBT is that the former targets more immediate and cost-effective score feedback; the 

TPO allows users to have immediate feedback on their performance for self-assessment of 

understanding of and comfort with the TOEFL iBT administration.  

In early 2006 the users of TPO could instantly receive scores on reading and listening 

sections, both based on multiple-choice items, as well as the writing section, with automated 

writing scores provided by e-rater® (Attali & Burstein, 2006). The scores on speaking sections 

were produced by human raters within 5 business days. As a result of substantial interest in more 

immediate feedback from the speaking section of the TPO—the TOEFL iBT Speaking Practice 

test—a research agenda was launched to develop and deploy an automated scoring system for 

spontaneous speech. The immediate goal of this effort was to improve the scoring efficiency of 

the TOEFL iBT Speaking Practice test while maintaining quality comparable to that of trained 

human-rater scoring for the TPO assessment. The long-term goal is to provide instructional and 

diagnostic feedback based on automated features beyond the score feedback provided by human 

scoring while maintaining a level of validity of scores nearly equivalent to that of human scoring. 

The result of this effort was the release of SpeechRater v1.0 for operational use in the TPO.  
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The TOEFL iBT Speaking Practice test uses retired forms from the TOEFL iBT 

Speaking test. Like the TOEFL iBT, each test contains six tasks. The first two tasks are 

independent tasks that ask candidates to provide information or opinions on familiar topics based 

on their personal experience or background knowledge. The purpose of independent tasks is to 

measure the speaking ability of examinees independent of their ability to read or listen to English 

language. The remaining four tasks are integrated tasks that engage reading, listening, and 

speaking skills in combination to mimic the kinds of communication expected of students in 

campus-based situations and in academic courses. The entire test takes approximately 20 

minutes. For each of the six tasks the examinee is allowed a short time to consider a response 

and then 45–60 seconds (depending on task type) to provide a spontaneous response.   

The scoring rubric used by human raters to evaluate the responses to the TOEFL iBT 

Speaking Practice test is identical to that used for the TOEFL iBT Speaking test. Similarly, the 

scoring process uses human raters who rate the operational TOEFL iBT Speaking test. The raters 

issue a holistic score for each response on a score scale from 1–4 that is based on three key 

categories of performance: (a) Delivery, (b) Language Use, and (c) Topic Development. Delivery 

refers to the fluidity and clarity of the speech. In assessing Delivery, raters consider the speaker’s 

pronunciation, intonation, rhythm, rate of speech, and degree of hesitancy. Language Use refers 

to the diversity, sophistication, and precision of vocabulary and the range, complexity, and 

accuracy of grammar. Raters evaluate candidates’ ability to select words and phrases and their 

ability to produce structures that appropriately and effectively communicate their ideas. Topic 

Development refers to the coherence and fullness of the response. When assessing this 

dimension, raters take into account the progression of ideas; the degree of elaboration; the 

completeness; and, in the case of integrated tasks, the accuracy of the content. The rubric for 

human scoring represents the construct of speaking that is of interest to both the operational 

TOEFL iBT Speaking test and the TOEFL iBT Speaking Practice test.  

One point worth mentioning is that the human scoring processes for the TOEFL iBT 

Speaking Practice test differ from operational scoring of the TOEFL iBT; the responses are 

scored task by task as they arrive, rather than in batches of responses that are all to a common 

task. In addition, the human raters are aware that they are scoring the practice test rather than the 

operational test.   
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The Validity Argument for Scoring TPO With SpeechRater v1.0  

With the general validation approach established and the context of use defined, this 

section presents the specific validity argument to be supported for SpeechRater v1.0. As Clauser 

et al. (2002) noted, the decision to use automated scoring will impact not only the strength of the 

evaluation inference, which links test performance to observed test scores, but also the 

subsequent inferences in the validity argument. This is described as the “ripple effects” of 

automated scoring that “extend through each step in the argument” (Clauser et al., 2002, p. 420). 

To position automated scoring in a larger validity argument for the whole assessment, a general 

description of the chain of inferences resulting in assessment-based action (Kane et al., 1999, and 

Chapelle, Enright, & Jamieson, 2008) is provided below as Figure 1 illustrating the accumulation 

of strengths and weaknesses of the validity argument from the item level through the point of 

taking action on the basis of assessment results. Figure 1 also provides an illustration of the 

ripple effect of decisions and validity evidence at various stages of the chain of reasoning within 

a validity argument.  

 

Figure 1. Links in an interpretative validity argument.  

The validity argument starts with the most fundamental considerations in conceptualizing 

and developing an assessment, defining the target domain of interest and designing assessment 

tasks to elicit the knowledge, skills, and abilities that are intended to be measured. The target 
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domain provides a basis for observations of performance on a test to reveal relevant knowledge, 

skills, and abilities.  

The second stage of the validity argument involves the application of an item-level 

scoring methodology to a response to produce an observed item score. The scoring methodology 

may be straightforward, as in most multiple-choice item scoring methods, or it may be complex 

and require considerable effort, and evidence, to ensure that it is fully appropriate. Such 

complexity is the case in many scoring models that use human scoring to evaluate performance-

based assessment tasks.  

In the third stage the results of many such item-level scoring processes are combined 

through simple summation or averaging or by using more sophisticated measurement models, 

such as item-response models, to produce a total test score. This observed test score is typically 

the basis for most assessment-based decision making and the primary emphasis of validity 

studies. Exceptions include cases in which subscores are reported and are intended to be 

sufficiently reliable to take some kind of action on the basis of the results.  

The fourth stage focuses on the consideration of the test score in combination with key 

aspects of measurement theory to recognize how well it would be expected to represent a 

universe score. Relevant interpretative concepts from measurement theory include true score 

estimation, reliability, and other principles that would be applied to estimate the degree to which 

the observed score is ultimately considered sufficiently accurate for decision making.  

In the fifth stage, meaning can be attached to the universe score in two potential ways to 

support valid interpretations of the assessment results. The universe score can be interpreted by 

drawing on a theoretical construct (e.g., a communicative competence model) that underlies 

consistencies in test takers’ performances. For assessments for which specific domains of 

generalization can be defined, this representation of the meaning of assessment results is further 

contextualized in the domain to which the test scores are intended to be generalized. The 

assessment results and inferred meaning, as influenced by both operational and theoretical 

constraints, are contrasted with the concerns and needs of the environment that the assessment 

simulates or predicts, which may be quite different for assessments used in certification and 

licensure than for those used for academic placement. This is the stage where domain and 

construct theories that dictate the test design blueprint, the principles of item and rubric 

development, and investigations of examinees’ engagement with test items (processes and skills 
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engaged) as moderated by the delivery mechanisms for assessment become highly relevant to the 

question of validation. Although these elements are not explicitly represented in Figure 1, they 

may constitute important evidence establishing the crucial link from a universe score to an 

interpretation.  

Finally, the contextualized interpretation of observed test scores, viewed as a potential 

representation of a universe score, is applied in the context of a decision-making need to result in 

action based, at least in part, on the assessment results. Aspects of the decision need to include 

such considerations as targeted selection rates, consequences of misclassification, and other 

constraints and demands of the decision-making process. Actions include those for individuals 

who take the test as well as actions based on an understanding of large-scale assessment results 

that are intended to effect change for large groups of people or for policymaking. 

As can be seen from this illustration, at the most global level the question of validity rests 

on whether the actions taken on the basis of assessment are warranted. Under this representation 

of a chain of reasoning for a validity argument, the implications of validity research required for 

an automated scoring system can be localized to the scoring method portion of the argument in 

the second stage of the validity chain. Specifically, the core issue of evaluation of automated 

scoring in the context of a validity argument for an assessment design is the replacement of a 

human scoring method with an automated one for the item-level scoring. The emphasis of 

validation efforts would be focused, initially, on the localized decision of item-level scoring but 

would be further obligated to evaluate the ripple effect, as such a replacement impacts the chain 

of reasoning downstream from the scoring method, with the most significant interest typically 

focused on implications for validity of reported scores for their intended use. 

Figure 2 represents an overlay of the six types of validity arguments, discussed in the 

context of automated scoring by Clauser et al. (2002), onto the chain of validity represented by 

Figure 1. For each type of validity argument, an arrow indicates the part of the validity chain of 

reasoning that is the focal point of the argument.  

The first type of argument, Domain Definition, is based on the premises that test tasks are 

sampled adequately from the target domain and that observations on a test are representative of 

the knowledge, skills, and abilities required in the target domain. Although this type of argument 

is central to the overall validity argument for an assessment, automated scoring does not 

typically come into play at this stage.  
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Figure 2. Six types of validity argument and their focus.  

The second type of argument, Evaluation, emphasizes the acceptance of a score being 
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scores. To support claims about the potential for improvements in quality of scoring resulting 

from automated scores, additional evaluation against criteria is needed, beyond direct 

comparison with a single set of human scores alone.    

The third type of argument, Generalization, emphasizes the ability to generalize from the 

observed test score to a score that would be expected from some universe of observations. In this 

case, certain assumptions are made about the interchangeability of certain observations in the 

universe of possible observations that could conceivably be made, ultimately resulting in the 

assumption of invariance of the observed test scores resulting from different conditions of 

observation. The key goal of this area of emphasis is the extent to which the observed test score 

can be taken to be representative of a universe (true) score. The pertinent assumption for the 

specific case of language testing is that scores on language test tasks are generalizable over 

similar language tasks in the universe, raters, test forms, and occasions. In order to support this 

link, evidence is needed that the errors incurred in the measurement process are minimized to a 

level where we can be sure that, if a test taker were given similar language tasks, rated by 

different raters, or administered an alternate form or the same test on a different occasion, he or 

she would obtain a similar observed test score. The fundamental concerns and protocols for 

addressing this area of validity research are very similar between human and automated scoring. 

The Extrapolation argument emphasizes the relationship between the tasks administered 

in an assessment, often artificial and contrived for test purposes, and the criterion tasks in a real-

world environment in which the examinees are expected to function. This argument builds on the 

Generalization argument; however, here the emphasis has shifted to whether scores on test tasks 

could adequately predict performance in the real-world area of practice. This is crucial in the 

overall validity argument for a language assessment, because it bears on whether test takers’ 

scores on the test provide adequate evidence about the language abilities that underlie their 

language performance in a target domain beyond the test. The assumptions are that test scores 

reflect the quality of language performance on relevant tasks in the real world. However, this is 

an initial assumption that demands an evidential basis through validation. For the specific 

concerns of automated scoring, a relevant question is whether there is any differential evidence 

of increased or decreased validity from the Extrapolation perspective as a result of substituting 

automated scoring for human scores. 
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Explanation is an area of validity research that focuses on the explanatory capacity of the 

assessment results. Specifically, this area of emphasis focuses not just on the score being an 

adequate predictor of performance level in the domain of interest, but also on the ability to draw 

explanatory inferences from the score beyond its ability to be predictive of criteria of interest. As 

a result, approaches to scoring that are construct based and capable of offering specific 

hypotheses about the abilities of examinees (such as diagnostic strengths or weaknesses, work 

processes, etc.) offer more contributions to the Explanation argument for validity than those that 

are less able to provide specific hypotheses beyond the association of scores with a limited range 

of criteria of interest. The Explanation area is relevant to automated scoring because it may be 

possible to obtain automated scores that are similar to those of human graders, but for reasons 

that are inconsistent with the meaning that the scores are intended to convey. As a case in point, 

consider that automated scoring of essays may produce scores that are fairly similar to those of 

human graders using nothing more than the essay length in words, yet the meaning imparted to 

the resultant score by such an approach would be unsatisfactory. A more construct-representative 

method of automated scoring would be preferred, even at the cost of some degree of association 

with human scores. As a result, the question of how scores are produced and the implications for 

the construct representation of such scores are a critical part of the overall validity evaluation of 

scores, both automated and human. 

The final area of investigation, Action, is the direct connection between the score-based 

interpretations and the decisions made, at least in part, on the basis of assessment results. The 

assumptions are that the test scores and other related information provided to users are relevant, 

useful, and sufficient for making intended decisions and promote positive effects on teaching and 

learning (Bachman, 2005).  

Some arguments for, and against, the use of automated scores have referenced these 

classes of validation efforts as the basis for expectations of strengths and weaknesses of 

automated scoring in operational settings. For example, with respect to the Evaluation aspects of 

validity, the use of automated scoring could make the logic of score production completely 

transparent and reproducible, offering the promise of standardization and openness to critique 

and modification as needed or feasible. Of course, with this advantage comes the concern that 

automated methods do not actually replicate the same cognitive processes that human graders 

undertake when they score responses, even when such processes are fairly well understood. 
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Therefore, the underlying logic of an automated system, while perhaps similar to human graders, 

remains different in key respects. The direct comparisons between human and automated scoring 

are the most typical and prevalent method for validation of automated scores, which is generally 

appropriate considering that such Evaluation is targeted at the point at which automated scoring 

has its most direct impact on score production: the scoring method.   

Similarly, for Generalization the argument has been made that since an automated 

scoring system applies the defined rating criteria consistently, regardless of the circumstances of 

the solution, it can improve score generalizability by eliminating differences in the leniency or 

harshness of raters’ judgments over tasks, occasions, or combinations of these. The potential 

threat to validity of such an advantage is that such consistency is only beneficial to the extent 

that there is confidence that the approach taken is appropriate for all possible responses. Any 

novel or unanticipated, but appropriate, solutions to task prompts may not be well handled by an 

automated system with a fixed and rigorous method for evaluating responses. Also, any errors or 

undesirable aspects of the automated scoring systems that do exist will be systematically applied 

to all responses, resulting in the potential for bias that also may compromise the Evaluation and 

Explanation aspects of the validation argument.  

The area of Extrapolation is one in which use of automated scoring has relatively little 

impact beyond what is specified in the other areas of emphasis. A common argument in favor of 

automated scoring from the Extrapolation perspective is that the speed and efficiency of 

automated scoring can make the use of tasks with greater real-world fidelity more feasible for 

operational use. Counterarguments for use of automated scoring from the Extrapolation 

perspective include the concern that automated scoring is itself an artifact of the testing process 

and that in practice the work of examinees is not evaluated by an automated system but by other 

humans with whom they interact. 

Explanation is an area in which both the strengths and weaknesses of automated scoring 

are generally apparent. A proposed strength is that automated scoring allows for the 

maximization of construct representation by selecting construct-relevant response features and 

combining them to produce scores in a way that best represents the construct (Bennett, 2006; 

Bennett & Bejar, 1998). This degree of control is not possible with human scoring. Similarly, the 

ability to have extensive and consistent analysis of a response promises to expand the potential 

for meaningful performance feedback with detailed descriptions of the strengths and weaknesses 
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of the response that are not feasible under human scoring. By contrast, along with the potential 

advantage of customizing the construct representation of scoring with an automated scoring 

system, some aspects of the construct simply will not be captured to the satisfaction of experts in 

the field with automated mechanisms. This is particularly true for developing a scoring system 

for a construct as complex and challenging as speaking proficiency. Conceptualizing and 

implementing speech features that indicate the key criteria human raters use to score spoken 

responses present immense challenges. The tendency to extract easily quantifiable aspects of the 

performance due to the limitations of current speech technologies could result in construct-

irrelevant features or features that do not represent the full construct of interest to the assessment. 

In addition, given the complexity of human raters’ decision-making processes involved in rating 

speaking, designing a scoring system that adequately reflects those processes is obviously not an 

easy task. Even a scoring solution informed by expert judgments may not be adequate in 

representing the intended constructs, depending on the qualifications of the experts and the rigor 

with which the work is conducted. 

Finally, the Utility area of validity work remains largely unchanged under automated 

scoring as it would be with human scoring. In this sense automated and human scores are subject 

to very similar concerns, both in terms of strength and weakness, as to how these pertain to the 

validity of assessment-based decision making. Despite the overall similarity of concerns, specific 

issues in Utility are relevant in the context of automated scoring: (a) whether the accuracy of the 

automated scores supported the intended decisions, (b) whether the knowledge of the scores 

being assigned by a computer will change the user’s perception of the assessment and the way 

that user approaches the tasks and uses and interprets the results, and (c) whether automated 

scoring will promote positive effects on teaching and learning practices. 

Since a validity argument is only as strong as its weakest link (Kane, 1992), it is critical 

to identify all the potential threats to the various inferences and provide counterevidence against 

the rebuttals. The validation efforts for SpeechRater v1.0 as a mechanism for scoring responses 

for the TPO focus on providing counterevidence that discounts these rebuttals. Therefore, to 

build and evaluate a validity argument for the SpeechRater v1.0, four basic steps are involved:  

1. Clearly state the intended interpretation and use of the automated scores on the TOEFL 

iBT Speaking Practice test (the Action, from Figure 2). 
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2. Articulate the network of inferences that lead to the intended interpretation and use, 

consistent with the chain of reasoning outlined in Figure 2. 

3. Identify critical rebuttals that may weaken each inference as a result of the use of 

automated scoring, based on the areas of validity research associated with the chain of 

reasoning in Figure 2.  

4. Collect and integrate evidence to reject the potential rebuttals associated with each 

inference. 

The first three steps will yield an interpretive argument, the plausibility of which will then be 

evaluated in Step 4 in the context of a validity argument.  

The goal of SpeechRater v1.0 is to support the intended use of the TPO, to help students 

better prepare for and gauge their readiness to take the TOEFL iBT Speaking test. The claim at 

the observed item score level that is directly supported by use of SpeechRater v1.0 is:  The 

SpeechRater v1.0 item score is a prediction of the score on the TOEFL iBT Speaking Practice 

test this response would have obtained from trained human raters. 

The claims that are supported at the Utilization level for the speaking portion of the TPO, 

with scoring provided by SpeechRater v1.0, are the following: The TPO Speaking score, using 

SpeechRater v1.0, is a prediction of the score on the TOEFL iBT Speaking Practice test this 

examinee would have obtained from trained human raters. The entire practice experience can 

help familiarize test takers with the content and format of the TOEFL iBT Speaking test so that 

they can better prepare for it. This score can be used by the test takers to help them self-evaluate 

their readiness to take the TOEFL iBT Speaking test.  

Table 1 shows the most common types of inferences that need to be verified to support 

the claims we would like to make based on scores generated by the SpeechRater v1.0. These are 

classified by general areas of validity research referenced above. The crucial rebuttals that may 

undermine the validity of the SpeechRater v1.0 are also stated, associated with the most pertinent 

validity area. Failure to provide evidence to reject any of these rebuttals could weaken the 

argument for the use of automated scoring. Within this framework this paper presents results of 

investigation of four major areas of emphasis:  

1.   Evaluation. The extent to which the scores provided by SpeechRater can be argued to 

be a reasonable prediction of human scores. The primary evidence for this claim is  
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Table 1  

Areas of Emphasis for Validity of SpeechRater v1.0 and Associated Rebuttals  

Inferences Rebuttals 
Evaluation: Automated scoring results in 

scores that accurately represent the 
quality of the performance on the 
practice test. 

1. The scoring algorithm under- or misrepresents the 
construct or introduces construct irrelevance so that 
the resulting scores are not accurate.  

Generalization: The scoring model can 
generalize to new tasks and samples of 
candidates, and the automated scores 
are generalizable over tasks.  

1. The scoring model is built from insufficient or 
unrepresentative samples. 

2. The scoring model does not generalize to new tasks 
or independent candidate samples.  

3. The automated scores do not generalize across tasks. 
Extrapolation: The automated scores 

reflect the quality of performance on 
relevant real-world speaking tasks in 
an academic environment.   

1. Candidates’ automated scores are not related to their 
levels of performance on real-world speaking tasks 
in an academic environment.  

Explanation: The automated scoring 
model captures aspects of performance 
that reflect the underlying speaking 
abilities used in an academic setting.  

 

1. The automated scores are not adequate in explaining 
examinee performance in the domain.  

2. The speech features used in scoring models are not 
well linked to the rubric, introducing construct 
irrelevance.  

3. The speech features do not cover the key criteria 
defined in the rubric very well, resulting in construct 
underrepresentation.  

4. The speech features are not combined in a 
meaningful way to produce scores. 

5. The scoring model disproportionately captures 
aspects of the rubric that generalize across tasks, 
reducing task specificity in an undesirable way, so 
that the constructs are underrepresented.  

Utilization: The automated test scores 
and other related information provided 
to candidates are relevant, useful, and 
sufficient for them to make intended 
decisions and promote positive effects 
on teaching and learning. 

1. The predicted scores and other information 
communicated to the candidates do not provide 
relevant, useful and sufficient information for them 
to gauge their readiness to take the TOEFL iBT 
Speaking test.  

2. The automated scores negatively impact users’ 
perceptions of the assessment and the way they 
interpret and use the scores as intended.  

3. The automated scoring system does not promote 
positive washback effects on English language 
teaching and learning.  

4. The potential negative consequences of SpeechRater 
v1.0 are not anticipated and minimized. 
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based on various empirical measures of association between automated and human 

scores on a common data set. 

2.   Generalization. Arguments for the generalizabilty of the SpeechRater v1.0 automated 

scoring to a variety of task prompts is provided on a conceptual basis, with respect to 

design decision in the construction and application of the scoring models as well as 

on an empirical basis with respect to the generalizability of the automated scores 

across tasks, estimated using generalizability theory (Cronbach, Gleser, Nanda, & 

Rajaratnam, 1972). 

3.   Explanation. Arguments for the appropriateness of SpeechRater v1.0 for explanation 

are provided and counterarguments presented on a predominantly logical basis, using 

the design decisions, features used in model construction, and the way features are 

combined to produce automated scores as the basis for such arguments. 

4.   Utilization. Arguments for the usefulness of the SpeechRater v1.0 scores for self-

evaluations of readiness to take the official test are supported by an analysis of the 

magnitude of the prediction error in relation to the intended decision. Arguments 

about potential consequences of the SpeechRater v1.0 are made based on the score 

report and on the advisory information communicated to the user about the limitations 

of the system and the intended use of the scores, included as part of the user interface.  

Other evaluations that are clearly relevant and necessary for an overall validity argument, 

including the evaluation of relationships of automated scores with external measures of ability, 

are targeted for future work. To give the reader a full understanding of exactly what is being 

validated in this study, the next section provides a schematic of the organization and operation of 

the SpeechRater v1.0 speech scoring system. 

3. Architecture of an Automated Scoring System  

This section describes the architecture of an automated speech scoring system, which 

serves as a natural organizing structure for the remaining of the paper. An automated speech 

scoring system consists of three major components (see Figure 3). The speech recognizer and the 

feature generation programs are closely interrelated and can be considered as one big component 

that generates the scoring features. The speech recognizer decodes the input audio files into 
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recognized words and utterances; then, the feature generation programs extract the scoring 

features indicating different aspects of performance in a response, based on various output that 

the speech recognizer produces. The second component is the scoring model used to score 

responses to individual tasks based on the scoring features and to summarize the scores across 

multiple tasks. The last component is the user interface that provides the score report and 

advisory information to users. 

 

Figure 3. Architecture of an automated speech scoring system.  
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In the next sections, we first describe the various data sets that were used to evaluate the 

speech features under consideration and to develop and evaluate the scoring model. We then 

address in sequence the development and validation efforts associated with each of the three 

major components of SpeechRater: (a) the scoring features, (b) the scoring model, and (c) the 

user interface. These three areas of investigation pertain to different inferences in the argument, 

with the first area providing evidence for the Explanation inference; the second one the 

Explanation, the Evaluation, and the Generalization inferences; and the third one the Utilization 

inference. In Section 9, the different lines of evidence are organized and synthesized to evaluate 

the soundness of the validity argument. On the basis of these evaluations a summary 

recommendation is described for using the SpeechRater in the TPO assessment and the 

implications of that recommendation summarized. The paper closes with recommendations for 

further work and extended validation studies.  

4. Data 

In building and evaluating the scoring models described in this report, we made use of 

two data sets: responses to the TPO assessment (the TPO data set) and responses from the 

TOEFL iBT Field Study (the iBT data set).  

TPO Data  

In total, the TPO data contained 4,162 spoken responses. An additional human score was 

obtained on each response as part of a special, intensive, human-scoring job. Nonadjacent 

discrepancies were adjudicated by a scoring leader in the special rating effort. For the purposes 

of model building and analysis, we used the second set of human scores, because they were 

undertaken under more optimal rating conditions. The adjudications were not used in the process 

of model building but were undertaken only to match our operational procedures for constructed-

response scoring. The additional ratings might also be useful in future analyses.  

The TPO data contained responses from four distinct test forms, with each test form 

containing six distinct speaking prompts: two independent tasks and four integrated tasks (see 

Section 3). Each TPO response may be assigned a score in the range of 1–4, or 0 if the candidate 

makes no attempt to answer or produces a few words totally unrelated to the topic. Each 

response also may be labeled as “technical difficulty” (TD) when technical issues may have 

degraded the audio quality so that a fair evaluation is not possible. These scoring rules are in 
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accordance with the scoring of the operational TOEFL iBT, and with the scoring of the iBT field 

study data described below. 

We set aside a portion of the TPO data for the training of the speech recognizer (the rec-

train set, about 1,900 responses). The remaining data were partitioned into the scoring-model 

training (sm-train, about 1,300 responses) and scoring-model evaluation (sm-eval, about 500 

responses) sets to maximize utility in evaluating the features and in building and evaluating the 

scoring models discussed in the next section. (The remaining responses were TD or 0 and were 

treated separately; see Section 9.) The sm-train and sm-eval sets consist of a set of responses 

with human scores in the range 1–4. The sm-train data were also used in evaluating the statistical 

properties of features (see Section 7) so that the feature selection was not biased by using the sm-

eval data.  

The partitioning of the TPO data was done in such a way that no overlap between 

speakers or tasks was allowed between the sm-train and sm-eval sets (to prevent overtraining on 

construct-irrelevant aspects of the response). The partitioning was also designed to minimize 

speaker and prompt overlap between the rec-train set and all other sets, although this constraint 

could not be enforced absolutely. In order to ensure that all data partitions were of sufficient size 

for their intended purposes, while meeting our other constraints, we were forced to accept some 

speaker and task overlap between the rec-train partition and other partitions. The total proportion 

of responses with task and speaker overlap with the rec-train set amounted to 25% of the sm-

train set, and 31% of the sm-eval set. Because there was still no overlap between the sm-train 

and sm-eval sets, it is unlikely that this would result in inflated estimates of scoring accuracy for 

SpeechRater. There is a danger that the overlap with the rec-train set could artificially inflate the 

recognizer’s word accuracy on each of these other partitions. However, this is unlikely to have a 

large effect on the scores produced by the model, because our set of scoring features do not 

depend strongly on the accurate recovery of the words spoken in a response. 

The partitioning process was also designed to ensure that the sm-train and sm-eval sets 

contain (a) a broad set of prompts, (b) similar proportions of responses from speakers of 

particular linguistic backgrounds, and (c) approximately the same proportion of responses to 

independent and integrated topics. This resulted in the division of the TPO data scored in the 

range of 1–4 into three sets, as shown in Table 2.  
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Table 2  

Summary Statistics of TOEFL Practice Online Data Scored in the Range of 1–4 

Score distribution Data 
set 

No. 
responses 

No. 
speakers 

No. 
topics 

Average 
score 

SD of 
score 1 2 3 4 

rec-
train 

1,907 320 24 2.81 0.72 52 
(2.5%)

550 
(28.8%)

1011 
(53.0%) 

294 
(15.4%)

sm-
train 

1,257 263 15 2.74 0.77 58 
(4.6%)

405 
(32.2%)

603 
(48.0%) 

191 
(15.2%)

sm-
eval 

  520 120 9 2.73 0.69 18 
(3.5%)

159 
(30.6%)

289 
(55.6%) 

54 
(10.4%)

Note. Rec-train = speech-recognizer training, sm-train = scoring-model training,  

sm-eval = scoring-model evaluation. 

The agreement between human raters on rating scorable responses in the 1–4 range was 

fairly low. Exact agreement was only 57.2%, with a quadratic-weighted κ of .554 and Pearson r 

of .55. The level of human agreement improved somewhat as we aggregated scores; the 

agreement on summed pairs of scores, triples, and full sets of six is presented in Table 3. As 

mentioned above, because the second set of raters rated under more optimal conditions, and the 

bulk of response adjudications tended to agree with them, we decided to use the second human 

ratings in doing our model development and evaluation. 

Table 3  

Human Agreement on Aggregated Scores for the TOEFL Practice Online  

Scoring-Model Evaluation and Speech-Recognizer Training Sets 

No. of  
scores 

Exact 
agreement 

Exact + adjacent 
agreement 

Quadratic-weighted 
kappa Pearson r 

1 57.2% 97.5% .54 .55 
2 40.0% 81.4% .61 .63 
3 28.8% 69.8% .62 .68 
6 15.5% 48.5% .71 .74 

Note. Technical difficulty and 0 scores omitted.  
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TOEFL iBT Field Study Data 

The TOEFL iBT Field Study was a pilot study undertaken before the official roll-out of 

the TOEFL iBT. While we were primarily interested in model performance on TPO data, we 

used the field study data in doing some evaluation runs for a number of reasons. First, the 

conditions under which the field study data were scored were closer to best practice than they 

were to the TPO data sets. Additionally, the partitioning of the field study data allowed for better 

evaluation of the effects of item score aggregation, since the evaluation set contains more 

complete forms (sets of six tasks for a given examinee). Finally, evaluation of the field study 

data provided us with some idea of how our model generalizes across populations and audio file 

formats.  

The field study data contained 3,502 responses from a single TOEFL iBT Speaking test 

form that were scored 1–4 (0s and TDs were not included). Since we did not need to train a new 

recognizer for these data, all of the data were used for the sm-train and sm-eval sets. These two 

sets of data were constructed to maximize the number of examinees with six complete tasks in a 

set so that we could evaluate candidates’ total scores on this section. This constraint prevented us 

from enforcing a ban on task overlap between the sm-train and sm-eval sets but did allow us to 

prevent speaker overlap. Table 4 shows the properties of these two data sets.  

Not all of the responses in these sets were double-scored, so we were forced to evaluate 

the level of human agreement on that subset of the data that had been double-scored. These 

results are provided in the Table 5. (Note that we did not have enough double-scored responses 

to provide agreement results for sets of six tasks.) 

Table 4  

Summary Statistics of TOEFL Internet-Based Test Field Study Data Sets 

Score distribution 
Data set 

No.  
responses 

No.  
speakers 

No. 
topics

Avg. 
score 

SD of 
score TD 0 1 2 3 4 

sm-train 1,750 311 6 2.44 1.02 0 0 366 573 482 329 

sm-eval 1,752 315 6 2.48 1.00 0 0 339 553 542 318 

Note. TD = technical difficulty, sm-train = scoring-model training, sm-eval = scoring-model 

evaluation. 
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Table 5  

Human Agreement on Aggregated Field Study Scores 

No. of 
scores 

Exact 
agreement 

Exact + 
adjacent 

agreement 

Quadratic-
weighted 

kappa Pearson r 
1 57.1% 98.3% .77 .77 

2 45.1% 87.6% .86 .86 

3 36.7% 86.7% .93 .94 

One point to note is that the human–human agreement, as indicated by the weighted 

kappa and the correlation, was much higher for the field study data than for the TPO data. This 

reflects in part the fact that the field study scores were more varied and more evenly distributed 

across the four score levels than the TPO scores. In contrast, in the TPO data, the scores 

clustered around 3, with very few at the score level of 1. After adjusting the marginal totals of 

the TPO sm-eval human–human score matrix to mimic the distribution of marginal totals similar 

to that in the field study data (Haberman, 1979), the weighted kappa estimates increased from .55 

to .76, and correlations between the two human ratings increased from .56 to .76 on single tasks 

for the TPO data.  

The TOEFL iBT Field Study data are in a different file format than that of the TPO data. 

For this reason, all experiments using this data were run with a different recognizer, which was 

trained on candidate responses to the TOEFL Academic Speaking Test, a stand-alone test 

identical in content to the TOEFL iBT Speaking test and made available to prospective test 

takers for practice purposes. This recognizer is substantially similar to the TPO recognizer, as it 

relies on the same core software base, but was optimized for a different population of speakers 

and file format. 

5. Development and Validation of Scoring Features  

This section discusses the development, evaluation, and selection of the features used in 

the scoring models for SpeechRater v1.0 for TPO, focusing on the processes and strategies we 

employed to ensure the construct relevance, construct coverage, and empirical value of the 

features. The results presented in this section lend support to the Explanation area of inquiry, 

which attaches meaning to the SpeechRater scores by explicating the relationships between the 
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scoring features and the speaking construct. Before the scoring features are discussed, some 

general background information on speech recognition and scoring systems and a description of 

a typical speech recognizer are provided.  

Background on Speech Recognition and Scoring Systems  

The technologies that support the automated evaluation of speaking proficiency are 

automated speech recognition (ASR) and analysis technologies as well as natural language 

processing tools (for a survey of these technologies, see Jurafsky & Martin, 2000). The 

application of these technologies to the TOEFL iBT Speaking Practice test poses challenges 

because this test elicits extended, spontaneous speech rather than highly predictable speech, and 

the scoring rubrics on which the responses are evaluated draw on models of communicative 

competence rather than adherence to an expected pattern of pronunciation, vocabulary, and 

fluency for highly predictable speech. In addition, the TOEFL iBT Speaking test has been 

developed to support the learning and teaching of academic speaking skills. Therefore, an 

automated evaluation system would benefit from having the potential to provide feedback on test 

takers’ performances. To meet those challenges, it is necessary to ensure the accurate recognition 

of spontaneous, accented speech and the use of meaningful construct-relevant features extracted 

from the responses that represent various aspects of the rubric for score prediction.  

The application of speech recognition and processing technologies to automated 

evaluation of speech is a fairly recent development. One successful area of research has focused 

on the automated evaluation of the pronunciation of nonnative speakers. Franco et al. (2000) 

have developed a system, EduSpeak, for the automatic evaluation of pronunciation by native and 

nonnative speakers of English and other languages at the phone and sentence levels. Candidates 

read English texts, and a forced alignment between the speech signal and the ideal path through 

the hidden Markov model (HMM) is computed. Based on this, the log posterior probabilities for 

pronouncing a certain phone at a certain position in the signal are computed to yield a local 

pronunciation score. This score is then combined with other automatically derived measures, 

such as the rate of speech and the duration of phonemes, for an overall pronunciation evaluation, 

using human judgments as the criterion.  

A company called Ordinate (now part of Pearson Education, Inc.) has developed an 

automated scoring system based on highly constrained speech, elicited through test tasks such as 

reading sentences aloud, repeating sentences, or answering questions that require short responses 
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containing only a few words (Bernstein, 1999). Scores in sentence mastery, fluency, pronunciation, 

and vocabulary based on these tasks are provided by means of speech-recognition and processing 

technologies. The Ordinate speaking assessments differ from the TOEFL iBT Speaking test in 

important ways. First, the TOEFL iBT test has been designed to support the teaching and learning 

of academic English. Therefore, the tasks used in the TOEFL iBT Speaking test elicit extended 

spontaneous speech typical of that used in academic courses and campus life. By contrast, the 

speaking tests developed by Ordinate aim to predict speaking proficiency. The tasks used in their 

assessments, constrained by the limitations of current speech-recognition and processing 

technologies, do not call for extended, spontaneous speech production and thus do not directly 

measure communicative competence. Second, for alignment with the goal of the TOEFL iBT test 

to promote good teaching and learning, the long-term goal of developing an automated scoring 

system for the practice test is to provide feedback on students’ performances on the TOEFL 

Speaking Practice test that is useful for them to improve their speaking skills. This requires that 

their speaking performances be characterized by combining in a reasonable way meaningful 

speech features that represent various aspects of the rubric.  

There is a growing body of research in the automated analysis of spontaneous speech, 

rather than constrained speech, which informs the effort to meet these goals. Cucchiarini, Strik, 

and Boves (2000) and Strik and Cucchiarini (1999), for example, have focused on the fluency 

features of free speech that can be extracted automatically from the output of a typical ASR 

engine. Their work has been influential in the conceptualization and implementation of relevant 

fluency features for this effort. However, the current effort targets more than fluency and aims 

instead to represent a full speaking construct suggested by current models of communicative 

competence (Bachman, 1990; Bachman & Palmer, 1996) and used as the model for scoring 

TOEFL tasks. At ETS, Zechner, Bejar, and Hemat (2007) made an initial effort to use speech 

technologies to extract speech features in fluency, vocabulary, and content that provided some 

evidence about the overall quality of responses to TOEFL iBT prototype speaking tasks, as 

indicated by the human scores. Xi, Zechner, and Bejar (2006) extended this effort by using an 

expanded and modified set of speech features that are more aligned with the human scoring rubric 

to predict both human holistic scores and analytic scores (Delivery, Language Use, and Topic 

Development) on TOEFL speaking tasks. This prior work formed the basis for the present study.  
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Description of the Speech Recognizer and its Role in Providing Data for Feature Extraction 

An ASR system can be conceptualized as a system whose input is a digitized acoustic 

signal and whose output is the best estimate as to what sequence of words corresponds to the 

input signal (Jurafsky & Martin, 2000; Rabiner, 1989; and Rabiner & Juang, 1993, offer 

introductions to speech recognition). In an automated speech scoring system, the speech 

recognizer provides data describing some properties of the speech (e.g., recognized word strings, 

timing information associated with each word and between words, etc.). Based on these data, 

speech features such as fluency or vocabulary can be computed.  

The ASR systems for the consumer market are commonly used for dictation and so are 

typically designed to maximize transcription accuracy. Therefore, an important metric in 

comparing ASR systems is their word error rate, which is based on a string alignment between 

the correct word string and the recognized word string (Jurafsky & Martin, 2000). 

The architecture of an ASR system has become fairly standardized. The goal of such a 

system can be seen as transcribing the acoustic signal into a textual representation and is mediated 

by two models, the acoustic model (AM) and the language model (LM), as well as by a 

pronunciation dictionary. The AM associates probabilities with speech units called phones that 

represent a given phoneme. Phonemes are idealized representations for actually occurring sounds 

(phones) that fall—in articulatory and perceptual respects—into the same class of sounds. For 

example, one such phoneme may be realizations of an “ih” sound in English (e.g., in a word like tip).  

The individual phonemes as well as sequences thereof are modeled with hidden Markov 

models, which can be understood as networks of nodes connected with directed and labeled arcs 

(transitions and transition probabilities); the nodes emit certain observations with associated 

observation probabilities. In our case, the observations are feature vectors derived from the 

digitized input signal. The task of a search algorithm is then to recover the underlying, hidden 

sequence (of phonemes and their parts) given a particular sequence of feature vector 

observations. 

The second model of a speech recognizer is the LM, which models the prior probabilities 

of word sequences in English that are called n-grams. For example, a trigram is a sequence of 

three words where the probability of the third word occurring in the context of the first and 

second word is estimated.  



 28

Both the AM and LM models need to be estimated (trained) ahead of time. For the AM 

training, a reasonably sized, transcribed corpus of speech is needed that is very similar in accent 

and acoustic conditions to the speech to be expected in the operational system. For the LM 

training, similarly, a reasonably sized text corpus is needed that corresponds well to word 

sequences expected to be encountered in the operational ASR system, ideally in style, grammar, 

and vocabulary.  

Finally, a pronunciation dictionary needs to be built where every word of the chosen 

vocabulary of the recognizer needs to have at least one associated pronunciation in terms of a 

sequence of phonemes. Some words may have a number of alternative pronunciations. For 

example, little could be phonetically transcribed as /l I t l/ or as /l I l/, where l, I, and t stand for 

the phonemes for the sounds of L, I, and T. 

The AM, LM, and pronunciation dictionary are used jointly to decode the signal. The 

decoding process is a search through alternative transcriptions of the signal in order to locate the 

most likely transcription. The search mechanism is computationally complex, as the beginnings 

and ends of words are not given in advance. Therefore, different word boundaries have to be 

considered to determine a ranked list of possible transcriptions.  

The performance of an ASR system is affected by a variety of factors related to 

generalizability, that is, the degree to which the training data are representative of the speech to 

be recognized. For example, the environment where the speech sample is captured, the 

surrounding noise level, the type and quality of the microphone, and the resolution of the speech 

signal are reflected in the AM. If those conditions are not maintained while using the ASR 

system after training, the performance of the ASR system will degrade when recognizing new 

speech. Other acoustic factors impact the performance of the AM, including the degree of 

accentedness and other speech idiosyncracies. The LM also affects the performance of the ASR 

system. The accuracy of the probabilities of observing n-grams clearly depends on the amount of 

the training data and on the match between the training and testing data in content and other 

characteristics.   

The Construct of Interest That Motivates the Scoring Features  

The TOEFL iBT Speaking test measures test takers’ ability to speak about everyday 

familiar topics; to summarize, synthesize, and integrate written and audio materials; and to 

present the information orally in a comprehensible, coherent, and appropriate manner. The 
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scoring rubric for human grading represents the construct of speaking that is of interest to both 

the operational TOEFL iBT Speaking and the TOEFL iBT Speaking Practice test. The full 

elaboration of this construct of speaking is provided graphically as Figure 4. 

 

Figure 4. The construct of speech for the TOEFL Internet-based test represented by the 

scoring rubric.  

Delivery refers to the pace and clarity of the speech. In assessing Delivery, raters consider 

the speaker’s pronunciation, intonation, rhythm, rate of speech, and degree of hesitancy. 

Language Use refers to the diversity, sophistication, and precision of vocabulary and the range, 

complexity and accuracy of grammar. Raters evaluate candidates’ ability to select words and 

phrases and their ability to produce structures that appropriately and effectively communicate 

their ideas. Topic Development refers to the coherence and fullness of the response. When 

assessing this dimension, raters take into account the progression of ideas; the degree of 
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elaboration; the completeness; and, in the case of integrated tasks, the accuracy of the content. 

Based on Brown et al. (2005), the rubrics for the TOEFL iBT Speaking test were reflective of 

what teachers of English as a second language and applied linguists thought were important in 

evaluating candidates’ speaking performance in an academic environment. The construct of 

interest (and basis for scoring spoken responses) for the TOEFL iBT Speaking Practice test 

represents the basis for evaluating the degree to which the automated scoring of SpeechRater 

v1.0 is consistent with or deviates from representation of this construct.  

Outline of the General Process Used to Derive Features 

The candidate features were derived based on the rubric for the TOEFL iBT Speaking 

test and informed by the relevant literature and extensive feedback from assessment specialists 

and expert raters. We started with a detailed analysis of the rubric, with the goals of 

decomposing it into the feature classes shown in Table 6 and formulating features for each 

class that could be realized computationally by means of speech and natural language 

processing technologies. We then conducted an extensive literature review of the relevant 

literature in second language learning and computational linguistics. We focused on the body 

of literature on the linguistic analysis of speech in terms of fluency, accuracy, and complexity. 

Many of the variables used in the linguistic analysis of speech are manually coded, but they do 

provide a conceptual basis for us to evaluate them for our purpose and to formulate ways to 

compute them. 

The computational linguistics literature yields some candidate features for us to evaluate 

and choose. Based on the literature review, we created a list of potential features indicating each 

feature class. We then obtained feedback from a group of content specialists about the 

meaningfulness of the features. Based on their input, we implemented the features that were 

considered well linked to the rubric.  

Inventory of the Features and Their Linkage to the Construct  

The Features  

A total of 29 features were computed based on the outputs of the speech recognizer (Table 

6). They are the candidate features that were evaluated and selected to develop the scoring models. 
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Table 6  

Candidate Features for the Development of the Scoring Models  

Feature 
Feature 

class Dimension Description 

1. Numwds Length   # of words 

2. Numtok Length   # of tokens [numwds + numdff]; disfluencies 
counted as tokens 

3. Globsegdur Length   Duration of entire transcribed segment, 
including all pauses 

4. Segdur Length   Total duration of segment without 
disfluencies & pauses 

5. Uttsegdur Length   Duration of entire transcribed segment but 
without interutterance pauses 

6. Wdpchk Fluency  Delivery  Average length of speech chunks 

7. Secpchk Fluency  Delivery  Average duration of speech chunks 

8. Wpsec Fluency  Delivery  Speech articulation rate 

9. Wpsecutt Fluency  Delivery  Speaking rate 

10. Secpchkmeandev  Fluency  Delivery  Mean absolute deviation of speech chunks in 
seconds 

11. Wdpchkmeandev  Fluency  Delivery  Mean absolute deviation of speech chunks in 
words 

12. Numsil Fluency  Delivery  # of silence events  

13. Silpwd Fluency  Delivery  Duration of silences normalized by response 
length in words  

14. Silpsec Fluency  Delivery  Duration of silences normalized by total word 
duration 

15. Silmean Fluency  Delivery  Average duration of silences 

16. Silmeandev Fluency  Delivery  Mean deviation of silences  

17. Longpfreq Fluency  Delivery  Frequency of long pauses  

18. Longpmn Fluency  Delivery  Mean duration of long pauses 

    

(Table continues) 
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Table 6 (continued) 

Feature 
Feature 

class Dimension Description 

19. Longpwd Fluency  Delivery  Frequency of long pauses normalized by 
response length in words 

20. Longpmeandev  Fluency  Delivery  Mean deviation of long pauses 

21. Silstddev Fluency  Delivery  Standard deviation of silence durations 

22. Longpstddev  Fluency  Delivery  Standard deviation of long pauses 

23. Numdff Fluency  Delivery  # of disfluencies (“uh,” “um”)  

24. Dpsec Fluency  Delivery  Disfluencies per second 

25. Repfreq Fluency  Delivery  # of repetitions normalized by response length 
in words 

26. Tpsec Fluency & 
vocab. 

diversity  

Delivery & 
Language 

Use  

Unique words normalized by total word 
duration 

27. Tpsecutt Fluency & 
vocab. 

diversity  

Delivery & 
Language 

Use  

Unique words normalized by speech duration 

28. Amscore Pronun-
ciation  

Delivery  Acoustic model score; compares the 
pronunciation of nonnative speech to a 
reference pronunciation model (which models 
the probabilities of sequence of phonemes)  

29. Lmscore Gram-
matical 

accuracy  

Language 
Use  

Language model score; compares the language 
of nonnative speech to a reference language 
model (which models the probabilities of 
sequence of words)  

Note. Mean deviation is computed as the mean of the absolute differences between feature values 

and the mean of feature values. The terms pauses and silences refer to the same thing. In all 

cases where the denominator would be zero, the respective value of a feature or component of a 

feature is also set to zero.  
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The automated features in Table 6 represent partially four aspects of the TOEFL iBT 

Speaking rubric: (a) fluency, (b) pronunciation, (c) vocabulary diversity, and (d) grammatical 

accuracy. Both fluency and pronunciation are related to the Delivery dimension of the rubric; 

vocabulary diversity and grammatical accuracy indicate the Language Use dimension.  

Fluency Features and the Speaking Construct  

There is a rich body of literature in second language learning examining how fluency 

varies for speakers of different proficiency levels (Deschamps, 1980; Raupach, 1980), how 

fluency is improved with language learning intervention or development (Dechert, 1980; 

Hansen, Gardner, & Pollard, 1998;  Towell, 1987), or how some temporal variables are related to 

human judgments of fluency (Cucchiarini, Strik, & Boves, 2002; Freed, 1995; Lennon, 1990; 

Riggenbach, 1991). Some key, observable indicators of fluency have been identified, which 

include rate of speech, pauses, and length of runs between pauses.  

As reviewed in Wood (2001), speech rate (wpsec) or articulation rate (phoneme per 

second) has been established as a major indicator of fluency. Greater speech or articulation rates 

are usually associated with more advanced speakers, although Munro and Derwing (2001) have 

found a curvilinear relationship between speech rate and overall comprehensibility. Their finding 

suggests an optimal speech rate, above which nonnative speech may be perceived as less 

comprehensible.  

Two major aspects of pauses have attracted attention from the field: (a) duration and 

frequency of pauses and (b) location of pauses. A lower ratio of pause time to speech time and a 

lower relative frequency of unfilled pauses have generally been found to characterize speakers 

who are rated as more fluent (Lennon, 1984; Riggenbach, 1991). The location of pauses 

indicates the pause structure of speech. Research has shown that pausing at sentence or clause 

junctures or between meaning groups within a clause is related to perceived fluency (Freed, 

1995; Riggenbach, 1991). When a speaker’s lexical, grammatical, or phonological encoding is 

less automatic or efficient, pausing in the middle of integral syntactic or meaning components 

occurs, which compromises the overall fluency and obscures meaning.  

In addition to speech rate and pause time and structure, the mean length of runs between 

pauses has also found sufficient empirical support as an important indicator of fluency (Moehle, 

1984). The more automatized, formulaic chunks of language a speaker has in store, the longer 

that speaker’s mean runs between pauses may be.  
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Conversation fillers (i.e., disfluencies) such as um, er, uh, ah, okay, you see, I mean, you 

know, well, and so are used by native speakers to fill silences, which in turn may make their 

speech sound more natural and fluent. Two factors may impact the effectiveness of 

communication when nonnative speakers use fillers: (a) To what extent are the fillers native like, 

and (b) how frequently are they used? Fillers that are not native like may be distracting to 

listeners. Excessive use of fillers may make one’s speech sound less smooth. Although the use of 

fillers could be a useful feature, because our current speech recognizer does not identify fillers as 

well as human transcribers do, any filler-related automated features are not reliably identified at 

the moment.  

Among the automated features that are related to fluency, wpsec (Feature 8) indicates the 

speech rate. We did not compute a speech articulation rate variable, although speech rate and 

articulation rate should be highly correlated. Features 12–22 are various measures for pauses. 

Among the pause measures, standard deviations or mean deviations of pause or long pause 

durations demonstrate whether the pauses are of varying or similar lengths. Features 6 and 7 

indicate the mean length of runs in seconds and words between .20 second or longer pauses. We 

have not computed features that indicate the location of pauses yet. We would need a robust 

phrase chunker that can chunk utterances into phrases reliably. This is planned for future work.  

Pronunciation Features and the Speaking Construct  

The segmental elements of speech refer to the individual phonemes of the language. 

Pronunciation concerns how individual phonemes are produced. Along with goodness of prosody 

and grammatical errors, phonemic errors is one of the key factors that impact the intelligibility, 

perceived comprehensibility, and accentedness of speech (Derwing & Munro, 1997).  

The quality of pronunciation is often judged in terms of how much listener effort is 

required to understand a speaker and to what extent phonemic errors interfere with meaning. The 

more difficulty a listener perceives in trying to understand a speaker (the more listener effort 

required), the more incomprehensible the speaker may be perceived. The more a speaker’s errors 

obscure meaning, the greater difficulty a rater may have in understanding the speaker. We have 

extracted a pronunciation feature (amscore, Feature 28) to indicate the pronunciation quality of a 

speaker as compared to a reference pronunciation model.  
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Lexical Diversity Features and the Speaking Construct  

Along with sophistication and precision of vocabulary, lexical diversity, or range of 

vocabulary, has often been used in the rubrics for speaking tests to define the quality of a 

speaker’s vocabulary use (Read & Nation, 2004). The more repetitive a speaker’s vocabulary is, 

the less likely that the speaker can express his or her ideas precisely.  

The traditional type token ratio (number of unique words divided by number of words) 

has been criticized because of its sensitivity to length. Malvern and Richards (2002) proposed the 

D measure that fits a curve of type token ratios based on many different random samples of 

words in a text. They have claimed that this measure overcomes the disadvantages of the type 

token ratio because it is independent of sample size and it takes into account both long-distance 

and short-distance repetition by taking many random samples from a text. However, since the 

TOEFL speaking responses are extremely short, it may not be feasible to compute this D 

measure, which requires taking multiple samples of words. We have used an alternative way to 

control for length: types of words divided by the total length of speech (tpsecutt) or length of 

speech without pauses and disfluencies (tpsec). These two measures depend on both how fast a 

speaker talks and how many different types of words he or she uses in a given unit time. 

Therefore, we have categorized tssec and tspsectutt as both vocabulary diversity and fluency 

features. Tpsecutt measures fluency to a greater degree than tpsec.  

Grammatical Accuracy Features and the Speaking Construct  

Grammatical competence is defined as one of the four components of communicative 

competence in Canale and Swain (1980), in addition to discourse competence, sociolinguistic 

competence, and strategic competence. Grammatical accuracy in speaking rubrics is usually 

operationalized as the extent to which grammatical errors interfere with meaning. We currently 

have a grammatical accuracy feature that indicates the extent to which word sequences in a 

response conform to a reference grammar model that models the probability of different word 

strings (lmscore, Feature 29).  

Design of the Study to Determine Which Features Will Be Adopted 

Strategy and Expectations for Feature Use 

In evaluating and selecting the final features for developing the scoring model, we 

considered both the construct representation of each feature (its linkage to the rubric and its 
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conceptual overlap with other features) and its empirical performance, as indicated by the 

strength of its relationship with the human scores. Two basic principles were adopted in the 

feature selection process. First, we aimed to target as broad of a construct as possible with the 

final set of features we determined. Second, the substantive meaning of a feature was given more 

weight than its empirical correlation with the human scores in feature evaluation and selection.  

Content representation. A CAC was convened that consisted of five assessment 

specialists with extensive experience in developing or rating speaking assessments. Two of them 

are intimately familiar with the TOEFL speaking scoring rubrics and are responsible for training 

and monitoring the TOEFL iBT Speaking test raters. This committee was charged with the task 

of reviewing the candidate speech features and the scoring models to make sure that the features 

are reasonable representations of the construct of speech and that the scoring models are 

substantively meaningful.  

The automated scoring project team met with the CAC regularly. The following steps 

were followed to review and evaluate the features: 

• The project team discussed the conceptual meaning and the computation of each 

feature with the CAC.  

• The CAC reviewed the substantive meaning of all candidate features and suggested 

modifications of existing features or additional features to be computed.  

• The project team discussed the basic statistics on all features with the CAC 

(descriptions of features, correlations of features with human scores, correlations 

among features, and differences in feature values across score levels).  

• The CAC suggested modifications of features or additional features to be computed 

based on the design and empirical performance of the features.  

• The CAC reviewed the modified or new features; this process was repeated until the 

committee members were comfortable with the changes.  

• Using a formal rating form (see Appendix A), committee members independently 

rated how well each feature was linked to the rubric and how well the combined set of 

features represented the rubric.  

• The CAC committee discussed their ratings as a whole group and modified their 

ratings, if necessary. 



 37

While selecting the features to be used in building the scoring models, the overlap among 

the features was also considered, in addition to the linkage of each feature to the rubric. The 

intercorrelations of a feature with other features as well as its conceptual overlap with them were 

taken into account while evaluating the unique contribution of a feature to the construct.  

Empirical performance. As discussed above, the correlations of the features with the 

human holistic scores were also made available to the CAC members to help them evaluate the 

features. However, this information was provided only after they had a chance to review 

thoroughly the substantive meaning of the features. The statistical properties of the features 

provided the content specialists with another perspective on the features. Although the 

judgmental evaluations of the features supported a proper representation of the construct with all 

the features combined, examining the correlations of the features with the human scores ensured 

that the features were useful in predicting the human scores.  

Data Used in the Study  

We made use of the TPO data in training the speech recognizer and in evaluating the 

speech features. The rec-train set was used for recognizer training, whereas the sm-train set was 

used to evaluate the statistical properties of features before model building and to parameterize 

the scoring models. The sm-eval set was used to calculate the final evaluation statistics 

summarizing each model’s agreement with human raters. 

Analytic Design and Analyses 

The speech recognizer: Acoustic properties of the data. The audio signals are sampled 

with a sampling rate of 22,050 Hz, mono, 16-bit resolution. The signal then is compressed into 

the Windows Media Format (.wma files; compression is not loss free) and has to be 

downsampled to 11,025 Hz and converted to standard PCM (.wav files) by means of the freely 

available program FFmpeg (n.d.), as our recognizer cannot handle .wma files. Although the wma 

compression not being loss free may have a slight adverse effect on speech recognition, the 

effect of the downsampling should be less noticeable, since the major speech events happen 

below 5 kHz, which is well covered with a sampling rate of 11 kHz (covers 0–5,500 Hz range). 

The speech recognizer: Training and adaptation of the speech recognizer. For the 

experiments in this report as well as for the operational TPO SpeechRater engine, we used a 

recognizer by Multimodal Technologies, Inc., specifically trained on the TPO data. Multimodal 
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bootstrapped this recognizer by using an existing 11 kHz recognizer trained on a large set of 

transcribed speech of native speakers of American English. The AM was then adapted to the TPO 

data (rec-train, about 2,000 speech samples of 45–60 seconds each) and the recognizer was 

retrained. For the LM, Multimodal used responses to both prototype and official TOEFL speaking 

tasks that were captured in various ways (i.e., Internet and the Interactive Voice Response system) 

as well as data from the Linguistic Data Consortium (Fiscus, Garofolo, Praybocki, Fisher, & 

Pallett, 1997). A trigram model with absolute discounting was used (Manning & Schuetze, 1999). 

The vocabulary size is 11,019 unique words, and the pronunciation dictionary contains 11,823 

entries, 804 of which are pronunciation variants. The out-of-vocabulary rate on a token basis on 

the transcribed part of the sm-train data set (645 files, about 67,000 words not including fillers) 

was measured to be 0.8% This out-of-vocabulary number means that 0.8% of the words (tokens) in 

the transcribed sm-train data set were not found in the recognizer’s pronunciation dictionary. The 

phoneme set contains 40 different regular phonemes, as well as some special-purpose phonemes 

for silence and filled pauses (“uh,” “um”). 

The speech recognizer: Speech decoding process. Using the speech recognizer described 

above, we decoded both the transcribed portions of the sm-train and sm-eval sets in three 

different speed-versus-accuracy (SvA) settings: (a) SvA = 0.0 (fast, low accuracy), (b) SvA = 0.5 

(balanced), and (c) SvA = 1.0 (high accuracy, slow). The rationale behind this was to explore the 

trade-off between speed and accuracy of the recognizer, as we desired to have a short response 

time for TPO in its operational setting without losing too much word accuracy. 

Table 7 provides the results both in terms of word accuracy and processing time. As 

shown in Table 7, SvA = 1.0 yields only a small gain in word accuracy at the cost of a more than 

six-fold increase in decoding time compared to SvA = 0.5. For that reason, we decided to set 

SvA to 0.5 in the operational system. When using smaller SvA values (e.g., SvA = 0.0), word 

accuracies are markedly lower; however, some preliminary evidence seems to indicate that 

despite the lower word accuracy, the effects on the accuracy of the scoring model are minimal. 

We will consider lowering the value of SvA in future versions of SpeechRater in the interest of a 

shorter processing time but are aware that additional features in the grammar, vocabulary, or 

content domains may be more sensitive to lower word accuracies. 
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Table 7  

Word Accuracy and Decoding Speed on Scoring-Model Training and Evaluation Sets 

Speed-vs.-
accuracy data set  n  

Word  
accuracya 

Average decoding time in 
seconds per speech sample 

Decoding time  
SD 

0.0 – train  645 41.0%   10.1     2.6 
0.0 – test  395 43.1%   10.4     2.3 
0.5 – train  645 48.9%   54.9   16.8 
0.5 – test  395 51.4%   56.9   14.7 
1.0 – train  645 50.5% 366.2 208.1 
1.0 – test  395 53.3% 366.0 208.2 

Note. Data set is number of transcribed samples (only applies to word accuracies). 
a The word accuracy is computed as in previous research (Zechner et al., 2007): word accuracy = 

0.5 * 100 * (C / (C + S + D) + C / (C + S + I)), with C = correct, S = substitutions, D = deletions, I 

= insertions, as a result of a string alignment with Levenshtein distance. See Towards an 

Understanding of the Role of Speech Recognition in Non-Native Speech Assessment, by K. 

Zechner, I. I. Bejar, and R. Hemat, 2007, Princeton, NJ: ETS; “Binary Codes Capable of 

Correcting Deletions, Insertions, and Reversals,” by V. I. Levenshtein, Soviet Physics Doklady, 10. 

The speech recognizer: Speech recognizer output. The recognizer writes one line of 

output for every word recognized. It consists of an utterance label (usually composed of 

speaker, item, and utterance ID), the start time and word duration in seconds, the word itself, 

and a confidence score (between 0.0 and 1.0). This confidence score is based on posterior 

recognition probabilities but is not to be interpreted as the probability of a word being 

correctly recognized; it is just a weak indicator (see Appendix B for a sample recognizer 

output). 

Furthermore, at the beginning a HEADER line contains the sample ID. At the end a 

TRAILER line contains the AM and LM scores as reported by the recognizer after recognition 

is completed. 



 40

In addition, every utterance has a pair of prosodic feature vectors, one for power (UTT-

Power) and one for pitch (UTT-SmoothPitch). The values in these vectors are various moments 

of the features over the period of the whole utterance as well as minimum and maximum 

values in that segment. They are only used for the filtering model, which decides which 

responses to assign a TD or 0 score and which to route to the main scoring model. 

Feature meaning and performance with human scores. Having provided input on the 

features following the process described earlier, the CAC made formal evaluations of the 

construct linkage and coverage of the features. Using the formal rating form in Appendix A, 

they first rated independently how well each feature was linked to the rubric and represented 

the feature class (e.g., fluency) and the dimension (Delivery, Language Use, and Topic 

Development) and how well the combined set of features represented the rubric. Then, they 

discussed their ratings as a whole group and adjusted their ratings, if necessary. Their 

evaluations of the features provided a basis for us to select the final features for the scoring 

models. A total of 13 features were selected based on their substantive meaning only.  

Then, the intercorrelations among these features were checked. If two features were 

correlated at .90 or higher, one of them was excluded based upon linkage to the construct, 

conceptual overlap with other existing features, and strengths of relationships with the human 

scores. This process eliminated two features, wpsecutt and silpsec. Wpsecutt was removed 

because it was one of the many fluency features, whereas amscore was the only pronunciation 

feature available. Silpwd was selected rather than silpsec because both indicate the same aspect 

of fluency conceptually, and the former was rated as more meaningful by the CAC and had a 

slightly higher correlation with the human scores as well.  

The correlations of these features with human scores along with the average ratings of 

these features on Questions 1–3 in Appendix A by the CAC members are included in Table 8. 

For all the features, the ratings on Question 1, which asked how well each feature is linked to a 

key dimension in the rubric, were 4 or higher on a 6-point scale. This attests to the 

meaningfulness of the features as perceived by the content specialists. The CAC members’ 

ratings on Questions 2 and 3, which targeted the construct coverage of the features of a particular 

feature class or dimension, were also generally high. This offers additional evidence that these 

were important features that covered a key feature class or dimension well.  



 41

Table 8  

Final Set of Features Used in Building the Scoring Models  

Average ratings by CAC by 
question (Q) 

Featurea Feature class 
Corr. with human 
holistic scores b Q1 Q2 Q3 

13. Silpwd Fluency  -.294 4.6 4.4 4.4 
15. Silmean Fluency  -.282 4.7 4.4 4.4 
8.  Wpsec Fluency   .449 5.1 4.5 4.3 
26. Tpsec Fluency & 

vocabulary  
 .296 5.1 4.5 5.1 

6.  Wdpchk Fluency   .106 5.6 5.2 4.8 
19. Longpwd Fluency  -.327 4.2 3.6 3.6 
18. Longpmn Fluency  -.204 4.5 3.8 3.8 
28. Amscore Pronunciation  -.445 4.7 4.2 4.2 
29. Lmscore Grammar  -.295 4.4 4.2 3.8 
27. Tpsecutt Fluency & 

vocabulary 
 .408 5.4 5.1 5.1 

11. Wdpchkmeandev Fluency   .097 4.2 3.6 3.8 
9.  Wpsecuttc d Fluency   .490 5.4 4.6 4.5 
14. Silpsecc e Fluency  -.149 3.1 3.1 3.1 

Note. CAC = Content Advisory Committee. 
a The feature numbers are consistent with those in Table 6. b These were correlations before 

some features were transformed. c Removed due to high correlations with other features.  
d Correlation with amscore: .94. e Correlation with silpwd: .93. 

6. Development and Validation of the Scoring Method 

This section describes the development and evaluation of different methods of spoken 

response scoring and the rationale we used to select the final scoring model for the SpeechRater 

system. The evaluation addresses the appropriateness of the scoring models to the construct as 

well as the empirical performance of the scoring models in relation to human scores (both in 

terms of agreement and in terms of reliability). Therefore, the results presented in this section 

constitute evidence for the Explanation, Evaluation, and Generalization inferences.  
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Standards for Evaluating the Scoring Models  

Our goals are to develop a scoring model that meets our expectations for technical standards 

and is a reasonable representation of the speaking construct. The standards we used to evaluate the 

substantive meaning and the technical quality of the scoring models are described below.  

Evaluating the Construct Representation  

In the evaluation of the construct representation of the features, the following factors 

were considered: (a) the extent to which the features in the scoring models are linked to and 

cover the construct and (b) the extent to which the way the features are combined to produce 

scores captures the expected relationships between the features and the speaking scores. 

Furthermore, in considering models based on multiple regression and classification and 

regression trees (CART), we were willing to sacrifice a bit of accuracy in order to ensure 

appropriate construct representation.  

Evaluating Technical Quality  

Our evaluation of the technical quality of the scoring models considered below focuses 

on four aspects:   

• Agreement of automated scores with human scores, 

• Degradation of human–automated score agreement from human–human agreement, 

• Mean score differences between automated and human scores, and 

• Generalizability of automated scores across tasks. 

The primary measures we used to assess the level of agreement between our models’ 

predicted scores and the scores assigned by humans were the coefficient of correlation and the 

root mean squared error (RMSE). A secondary criterion that we report is the weighted κ (Cohen, 

1968). (We used the quadratic weighting scheme, so that the penalty associated with a wrong 

score increases with the square of the difference between the human and predicted scores.) We 

used the weighted κ only as a secondary criterion for two reasons. First, the weighted κ is 

computed in terms of rounded scores and therefore is based on incomplete information about the 

scoring model’s prediction, especially at the task score level. Second, the weighted κ increases 

with the standard deviation of the predicted scores, and we do not want to encourage scoring 

models with a high variance. 
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Finally, we generally report the exact accuracy and exact + adjacent accuracy of the 

scoring models, which indicate, respectively, how often the predicted (rounded) score is exactly 

the same as the human-assigned score and how often the predicted score is off by no more than 

one score point. These last two statistics are poor measures of overall model quality, but we 

provide them because they have been used widely in other work on automated scoring. 

When possible (i.e., when the model to be considered is a regression model), we report 

the coefficient of correlation and the RMSE using unrounded predictions of scores. Generally, 

these better reflect the model’s consistency with human ratings. Rounding the scores before 

calculating agreement metrics loses a great deal of information about the model’s discriminative 

power. However, we also provide these metrics calculated using rounded scores, for all models, 

so that we have standard of comparison that applies to both regression-based and classification-

based methods.  

As useful summary statistics, we report the mean and standard deviation of the models’ 

predicted scores and of the human scores assigned to each set of responses. These serve to 

measure any bias or shrinkage the models might exhibit. In addition, we report the 

generalizability of the models’ predicted scores across different tasks, as this is an important 

piece of information to consider in evaluating an automated scoring system.  

It is important to emphasize that whether a particular level of prediction accuracy is 

acceptable depends on the intended use of the scores. Although degradation from human–human 

agreement is important to look at, the absolute level of performance determines the ultimate 

practical value of this system in supporting the intended use of the whole practice test.  

In the development of these evaluation criteria and their application to the scores 

produced by SpeechRater, we were assisted by a panel of psychometricians and measurement 

statisticians who were updated frequently on the status of the research. These experts comprised 

our Technical Advisory Committee (TAC) and played a comparable role in their oversight of the 

measurement issues encountered in the course of the project to that played by the CAC regarding 

construct issues. The TAC members had extensive previous experience with automated 

constructed-response scoring technologies, having supervised a number of applications of e-rater 

(Attali & Burstein, 2006) for the scoring of writing. In addition, they had prior experience with 

the spoken-response item types used on the TOEFL iBT. Therefore, their advice was well 

informed about measurement issues arising independently in the domains of automated scoring 
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and spoken-response scoring, and they were well prepared to consider this area of intersection 

between the two. 

Design of the Study to Determine What Scoring Model Would Be Applied 

Models Under Consideration: Characteristics and Expected Strengths and Weaknesses 

In this study, two methods for building scoring models were evaluated: multiple 

regression and CART (Breiman, Jerome, Olshen, & Stone, 1984). Other model types, such as 

Bayes networks (Pearl, 1988) and logistic regression, are potentially worthy of investigation for 

such an application, but the scope of this study was restricted to more well-known models for the 

initial release of SpeechRater. Multiple regression has the advantage of making predictions on a 

real-valued scale and does not discard information about centrality of class membership by 

forcing predicted scores to be integers. Also, being commonly known and applied in the social 

sciences, multiple regression is a method that is more readily understandable to potential users of 

scores from SpeechRater than less familiar statistical methods. As a parametric method, it is also 

more stable and statistically flexible. The CART method, on the other hand, hold the promise of 

a model structure that is more congruent with the way in which trained raters make their 

judgments at the task level, since it does not impose the same model structure over the entire 

score scale. 

Linear regression. The multiple regression scoring model calculates a predicted score for a 

response as a linear combination of feature values. To be concrete, the score is calculated according 

to the equation 

i i
i

Score fα β= +∑ . 

In this equation, i is the index of each feature in the model, the fi are the feature values, 

and the αi are the weights associated with each feature. β is a constant intercept term. 

Modeling the score as a weighted sum of feature values means that the features must be 

defined in such a way that the relationship between features and scores is the same throughout 

the entire range of the score scale. This also means that the predicted score may be a real 

(noninteger) number, which must be rounded to be used as a score that can be reported to the 

examinee. The fact that this score is a real number, however, is useful in doing score 

aggregation, because more information about an examinee’s performance on each task is 

retained. 
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CART. Classification trees are hierarchical, sequential classification structures that 

recursively partition the observations into different classes. At each decision node, the variable 

that best can classify the cases into distinct classes at a certain value is selected to perform the 

partition. For example, as illustrated in Figure 5, if the rate of speech is less than 3 wpsec, a 

response goes to the left node (representing the lower score class) and to the right node 

(representing the higher score class) if otherwise. Then, each of the child nodes may be further 

partitioned into two more nodes down the tree. The process is repeated until a terminal node is 

reached. In a nutshell, classification trees yield a set of if–then logical (split) conditions that 

permit the classification of cases.  

 

Figure 5. An illustrative example of a classification tree.  

Although a few computer programs implement this methodology, the CART software 

(Steinberg & Colla, 1997) implements the original methodology developed by Breiman et al. 

(1984). CART analyses are typically conducted in three steps:  

1.   In tree growing, the maximum tree is grown on the training sample.  

2.   In tree pruning, the maximum tree is pruned to produce a sequence of nested trees, 

and error rates are obtained for each tree using a cross-validation sample or a testing 

sample.  

3.   In optimal tree selection, the best tree is identified that represents a balance between 

the error rate and tree complexity.  

Speech 
rate Less than 3 

words per sec 

More than 3 

words per sec 

Lower scores Higher scores 
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In CART, a few methods are essential for refining the analyses for special circumstances: 

the use of prior probabilities, the use of different weights (costs) on different misclassification 

errors, and the use of different splitting rules. When the probabilities of different classes are 

known in the population but the sample used to train the data is not representative of the 

population, it may be important to use the priors of the population, since this will affect the 

estimation of error rates. Priors can also be used to avoid misclassifying certain classes that are 

deemed important. By increasing the prior probabilities of these classes in the population, trees 

can be grown that misclassify them less often. Either a higher probability or a higher cost can be 

put on an important class to improve its classification. However, misclassification costs can be 

used to define the costs of specific errors (e.g. the cost of classifying a score of 1 as 3 or a score 

of 4 as 2). This level of control is not available by manipulating priors. In addition to 

manipulating priors and costs, CART also offers a variety of splitting rules, including Gini, 

twoing, ordered twoing, class probability, forcing splits by user, and linear combination splits 

(see Steinberg & Colla, 1997, for a detailed description of these splitting rules). It is usually 

preferable to explore different splitting rules to find out which one provides the best 

classification results in a particular problem. 

An advantage of classification trees is that they do not assume that the underlying 

relationships between the predictor variables and the predicted classes are linear; do not follow 

some specific, nonlinear link function; and are not monotonic in nature. For example, holistic 

speaking scores could be positively related to speech rate if the rate is less than 5 wpsec but 

negatively related if the rate is greater than that. That is to say, the tree could have multiple splits 

based on the same variable, revealing a nonmonotonic relationship between the variable and the 

predicted classes. Moreover, a variable that does not discriminate well in the higher score classes 

can be used in classifying lower score classes without impacting the prediction of the higher 

score classes. These characteristics of classification trees contrast with other classification or 

prediction techniques, which use all of the important variables for classifying or predicting each 

case. Since the distinguishing speech features for different score classes may be different and the 

relationship between a speech feature and the speaking score may not be linear, conceptually, 

classification trees appear to be a suitable technique for classifying score classes based on scores 

from the TOEFL iBT Speaking Practice test. In addition, different patterns of strengths and 

weaknesses in different aspects of speech may lead to the same score class. This is also 
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compatible with a feature of classification trees that different sets of decision rules may result in 

the same score class.  

Although complex mathematical computations are used in growing the trees, the actual 

application of the tree is performed using a sequence of simple and easily understood decision 

rules that are transparent to content specialists. The classification mechanism is intuitively 

appealing. Thus, this technique is amenable to incorporating content specialists’ input in 

evaluating and refining the tree structure that best represents expert raters’ decision processes.  

Data Used in the Study  

In building and evaluating the scoring models described below, we made use of both the 

TPO data and the field study data (described in detail in Section 6). For the field study data set, 

the sm-train set was used for model building and the sm-eval set for evaluation. For the TPO data 

set, the sm-train set was used for model building. For evaluation we used both the sm-eval set by 

itself as well as the sm-eval set combined with the rec-train set (see below). 

Analytic Design and Analyses 

Statistical transformations and outlier processing. One complication of the multiple 

regression approach is the features we have developed for speech scoring may not conform to 

model assumptions, notably, the assumption of a linear relationship between the features and the 

score and the assumption that the error term in the regression equation is normally distributed. 

To address this possibility, we examined the distribution of each of our features and considered 

transformations of the features that might improve the correlation between the feature and the 

item score to be predicted, as well as making the feature’s distribution more normal.  

In determining whether a given feature ought to be transformed before being used in the 

regression model, we used two sources of information: normality information of the feature itself 

and correlation between the feature and the human task-level score. Only transformations that 

resulted in substantial improvements in normality or increases in correlations were used.  

We used quantile-quantile (Q-Q) plots to determine how far the feature’s distribution 

diverged from normality. Figure 6 shows such Q-Q plots for the amscore feature, before and 

after the inverse transformation. The plot on the left shows that the untransformed feature 

diverges from normality with a positive skew, whereas the plot on the right shows that the 
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inverse transformation yields a feature whose distribution almost perfectly matches a Gaussian, 

with the Q-Q plot being almost a straight line.  

 

Figure 6. Quantile-quantile (Q-Q) plots for the feature amscore. 

Table 9 shows the transformation performed on each feature and the changes in 

correlations before and after the transformation. Correlations for three of the four features 

improved considerably after the transformations, with one staying almost the same. The 

distributions of all of the four features were also much more normal after the transformations.  

Table 9  

Changes in Correlation Before and After the Transformation  

Correlations with human scores 

Feature Transformation performed Original Transformed 

Wdpchk Natural log (wdpchk + 1)  .106  .222 

Amscore Inverse -.445  .510 

Lmscore Inverse -.295  .282 

Wdpchkmeandev Inverse  .097 -.248 
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Since multiple regression is also susceptible to outliers, we also examined the feature 

distributions for outliers, which show up as deviations in the tails of our Q-Q plots. Ultimately, 

we decided that a cutoff value of 4 standard deviations from the mean best isolated the outliers in 

our training data, and we mapped all feature values outside this range to the maximum or 

minimum values allowed. Because classification trees are robust to outliers and do not assume 

normality of the data (Steinberg & Colla, 1995), no variable transformations or outlier 

processing were performed on the features used by the CART models. 

 Model building: Multiple regression. Our aim in developing the SpeechRater multiple 

regression model was to produce a model with high agreement with human raters, but also to 

structure the model so that its use of our predictive features is in conformance with our 

understanding of the speaking construct. Toward this end, we restructured the regression 

equation shown above (and repeated here for the sake of clarity) to use fixed feature weights 

instead of empirically determined weights: 

i i
i

Score fα β= +∑ . 

This original equation had a free parameter α associated with each scoring feature. The 

new equation still has a parameter α’ associated with each feature, but these parameters are not 

allowed to vary in the optimization of the model for a given training set. The only two 

parameters that need to be learned from the data are the slope parameter μ and the intercept β: 

i i
i

Score fμ α β′= +∑ . 

In essence, the training for a model of this form reduces to a rescaling of the linear 

regression function determined by the fixed weights iα′ . Note that a scoring function in this form 

always can be mapped back to a format in which each feature has a weight parameter, and the 

slope parameter μ is not factored out, using the mapping function i iα μα′= . 

The feature-specific weights iα′  were specified in consultation with the CAC, which, as 

discussed above, was a group of content-area specialists convened to ensure the construct 

appropriateness of our scoring model design. Note also that we standardized the feature values 

(to zero mean and unit variance) so that the CAC weights assigned were comparable across all 

features. The standardization parameters (the mean and variance of the feature as observed in the 

training data) were retained for scaling of the features in the test samples as well. 
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The CAC agreed on the use of a model with the features amscore, wpsec, tpsecutt, 

wdpchk, and lmscore. This set of features was deemed to provide the widest range of coverage of 

the different aspects of the speaking construct and could be weighted in such a way that the 

relative importance of each of these measures was represented. The weights for each feature 

were set by the research team with prior knowledge of the statistical properties of the features, 

their correlations with human scores, and the weights assigned to each feature by least-squares 

optimization. This weighting scheme was discussed and ultimately endorsed by the CAC. Table 

10 provides the feature class and dimension represented by each of the features used, together 

with their weights in the regression model. 

Table 10  

Features Used in Content Advisory Committee(CAC) Regression Model 

Feature Weight Feature class Dimension 

Amscore 4 Pronunciation Delivery  

Wpsec 2 Fluency Delivery  

Tpsecutt 2 Vocabulary, fluency Delivery & Language Use  

Wdpchk 1 Fluency Delivery  

Lmscore 1 Grammar Language Use  

Other models with different features and weightings were considered, but their agreement 

with human raters was not significantly different from the CAC regression model discussed here, 

and they had inferior construct representation. For these reasons, we focus only on regression 

models that use the CAC feature set shown in Table 10.  

We fixed the weights (α’) of the standardized features to the CAC-defined values shown 

in Table 10 and trained the model using the TPO sm-train data as described earlier. This 

involved setting the model slope parameter μ and intercept β to minimize the least squares error 

on this training data.  

In addition, we built a model, the equal weights model, that uses the same feature set 

(shown in Table 10) but assigns them equal weights, rather than the expert weights we had used 

previously. The third model we developed, the optimal weights model, assigns least squares 

optimal weights to each feature, rather than setting them at fixed values.  
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One shortcoming of just using the TPO sm-eval set for evaluation is that it does not allow 

a direct estimation of the correlation of predicted scores with human-assigned scores on a full 

complement of six tasks, which is the level of the score we wish to report (since there are six 

tasks in the TOEFL iBT Practice Speaking test). There were only 58 candidates with complete 

sets of six task scores in this evaluation set. To address this deficiency, we performed an 

additional evaluation run on the combined data from the TPO sm-eval and rec-train sets. This 

combined set of evaluation data contained many more (308) complete sets of six tasks per 

candidate than the sm-eval set alone.  

Strictly speaking, however, there is a methodological issue with doing the evaluation this 

way. Since the data from the rec-eval set were used to train the speech recognizer, some of the 

learning from this stage (relative probabilities of word sequences and pronunciation variants) 

might cause the scoring model to perform uncharacteristically on this particular set of data. In 

practice, however, this seems unlikely, given that our feature set abstracts away from the actual 

hypothesized word sequence returned by the recognizer. Although the lmscore and amscore 

features do use information about the internal state of the recognizer, and therefore could be 

affected by the use of a particular response in recognizer training, we expect this effect to be small. 

Model building: CART trees. CART 5.0 (Steinberg & Colla, 1997) was used to build the 

classification trees. We explored different model configurations using different combinations of 

priors and splitting rules. For each combination, a 10-fold cross-validation was conducted. In 

each set of 10-fold cross-validation, a tree was first grown on the entire sm-train sample, yielding 

a sequence of trees for which error rates could be computed. Then, the sm-train set was divided 

into 10 subsets of equal sizes, stratified on the dependent variable. In each cross-validation run, 

one subset was used as the testing sample, with the remaining 9 subsets as the training sample. 

This process was repeated 10 times. After the completion of the 10 runs, the error counts from 

each of the 10 test samples were summed to obtain the overall error count for each subtree in the 

whole-sample tree sequence (Steinberg & Colla, 1997). Subsequently, the optimal subtree was 

identified: a relatively small tree with the highest or near-highest agreement with the human 

scores (weighted kappa) on the cross-validation sample. 

Substantive meaning of models. To evaluate the construct representation of each scoring 

model, four CAC committee members provided overall ratings of the construct representation of 

each model using a formal evaluation form (Appendix C). They considered the relevance and 
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coverage of the features present in the model as well as the meaningfulness of the contribution of 

features to scores. The first two questions asked how well the features present in the model 

represented the TOEFL iBT speaking rubric and how well the model captured the relationships 

between the automated features and the speaking construct. The third question asked their 

opinions on the extent to which the model was consistent with the decision-making processes 

that human raters use to derive a holistic score.  

Model performance in terms of agreement with human scores. As discussed in the section 

on the standards used to evaluate the technical quality of the scoring models, we produced 

various statistics that indicate the correspondence of the scores predicted by the scoring models 

with the human scores. 

 Model performance in terms of score generalizability across tasks. Generalizability 

studies were conducted on the scores for the sm-eval and rec-train sets estimated using multiple 

regression and CART, respectively. The phi coefficients for scores across six tasks were 

computed for the two scoring models and compared to that of the single human scores summed 

across six tasks. The phi coefficient indicates the dependability of scores when absolute 

decisions are of concern, that is, when the absolute levels of scores, rather than the rank ordering 

of them, are of interest.   

Results  

Multiple regression. The result of applying this scoring model to the sm-eval set is shown 

in the center column of Table 11. In Table 11, the agreement results are broken down into three 

sections. In the top third of the table, we show the agreement between SpeechRater’s predicted 

scores and the scores assigned by human raters to a single task. In the second third, we provide 

the same information for aggregated pairs of scores (sums of scores on two tasks by the same 

examinee). The bottom third of the table provides the same information for sets of three scores. 

Because of the way the data were partitioned for this project, there were not enough examinees 

with six complete tasks (one full test form) in the sm-eval set for us to perform this evaluation on 

a full set of six aggregated tasks. 

The most important statistic for evaluating the quality of this scoring model is the 

correlation of the predicted scores with the human-assigned scores, which ranges from .49 for 

single items to .56 for sets of three tasks. (We report correlations for unrounded scores, as these 

allow for better extrapolation to the correlations to be expected on sets of six tasks, the scores we  
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Table 11  

Performance of Different Weighting Schemes Using CAC Feature Set on TPO Scoring-Model 

Evaluation Set Data 

Multiple regression 
Model Equal weights CAC weights Optimal weights 

Single scores (N = 520) 
Quadratic-weighted κ 0.30 0.32 0.35 
Exact agreement 59.0% 59.2% 61.3% 
Exact + adjacent 
agreement 

98.5% 98.8% 98.7% 

Mean (SD) of predicted 
score 

2.78 (.32) 2.78 (.33) 2.73 (.31) 

RMSE (unrounded) 0.61 0.60 0.61 
Correlation (unrounded) 0.46 0.49 0.47 
RMSE (rounded) 0.68 0.67 0.65 
Correlation (rounded) 0.35 0.37 0.40 

  1 2 3 4   1 2 3 4   1 2 3 4 
1 0 13    5 0 1 0 13    5 0 1 1 12    5 0 
2 0 52 106 1 2 0 54 105 0 2 0 63  96 0 
3 0 31 254 4 3 0 34 252 3 3 0 35 253 1 

Confusion matrix: predicted 
vs. human scores 

4 0  2   51 1 4 0   1    51 2 4 0   2  50 2 
Paired scores (N = 232) 

Weighted κ 0.35 0.40 0.41 
Mean (SD) of predicted 
scores 

5.56 (.57) 5.55 (.58) 5.47 (.53) 

RMSE (unrounded) 0.99 0.97 0.98 
Correlation (unrounded) 0.49 0.52 0.50 
RMSE (rounded) 1.05 1.01 1.00 
Correlation (rounded) 0.42 0.47 0.48 

Triples of scores (N = 163) 
Weighted κ 0.43 0.44 0.41 
Mean (SD) of predicted 
scores 

8.39 (.79) 8.38 (.83) 8.25 (.77) 

RMSE (unrounded) 1.33 1.30 1.33 
Correlation (unrounded) 0.53 0.56 0.52 
RMSE (rounded) 1.35 1.35 1.37 
Correlation (rounded) 0.51 0.51 0.48 

Note. CAC = Content Advisory Committee. 
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ultimately hope to report.) These correlations are not as strong as we might hope for; however, 

they must be evaluated taking account of the more limited variability in the scores in this sample 

than in the field study sample. Remember from the discussion of human agreement above that 

the correlation between the scores assigned by two human raters was only about .70 on sets of 

three items from this data set. That effectively sets an upper bound on the effectiveness of our 

model (and also makes it more attractive to find a replacement for human scoring, which is 

currently somewhat unstable). 

Note also that there is less variation in SpeechRater’s score estimates. The standard 

deviation of predicted scores is considerably lower than the standard deviation of human-

assigned scores (0.331 vs. 0.692 for single items). This is partially due to the uneven distribution 

of task scores in the training data (with almost half the tasks receiving a score of 3) but also may 

have to do with inconsistency in the human scoring of these responses and with the limited range 

of construct coverage in our feature set. 

Table 11 also provides results for two models related to the multiple regression scoring 

model already discussed, which had feature weights set by the CAC. The model shown in the 

first column is the equal weights model and the final column of the table has the results for the 

optimal weights model. (This optimal weights model differs primarily in assigning even more 

importance to the pronunciation feature amscore). The summary statistics for these three models 

are very similar, illustrating that the multiple regression model is not sensitive to small variations 

in the weights chosen (cf. Wainer, 1976). In fact, the regression model with the weights set by 

the CAC has the best correlation with human scores for sets of three tasks.  

In order to perform an analysis to aggregate complete sets of six responses, we also tested 

our CAC regression model on a data set composed of the sm-eval set combined with the rec-train 

set. Although the rec-train set is not technically a pure unseen evaluation set, because it was used 

in the training of the speech recognizer, it was not used in the parameterization of the scoring 

model itself. Any scoring differences observed in this data set could be only a result of a 

difference in the recognizer’s word error rate, which is unlikely to be a strong predictor of 

scoring accuracy, because our features are not dependent on a highly faithful recovery of the 

words in the response. 

The results of the CAC regression model are shown in the second column of Table 12 for 

this combined data set of sm-eval and rec-train. These are generally in line with the results shown  
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Table 12  

CAC Regression Model Performance on TPO Evaluation + Recognizer Training Set and on 

Field Study Data Set 

Scoring-model evaluation set 
TPO evaluation + recognizer 

training set Field study test set 
Single scores N = 2427 N = 1752 
Quadratic-weighted κ 0.325 0.510 
Exact agreement 57.8% 44.2% 
Exact + adjacent agreement 98.4% 95.1% 
Mean (SD) of predicted score 2.79 (.37) 2.45 (.61) 
RMSE (unrounded) 0.63 0.79 
Correlation (unrounded) 0.47 0.61 
RMSE (rounded) 0.69 0.84 
Correlation (rounded) 0.37 0.55 

  1 2 3 4   1 2 3 4 
1 0  49   21  0 1 91 217  31  0
2 0 254  451  4 2 25 310 215  3
3 0 154 1,120 26 3 14 172 348  8

Confusion matrix: predicted vs. 
human scores 

4 0 15  305 28 4  1  36 255 26
Pairs of scores N = 1,137 N = 854 
Weighted κ 0.45 0.58 
Mean (SD) of predicted scores 5.58 (.68) 4.92 (1.13) 
RMSE (unrounded) 1.04 1.36 
Correlation (unrounded) 0.53 0.66 
RMSE (rounded) 1.06 1.40 
Correlation (rounded) 0.50 0.64 
Triples of scores N = 757 N = 555 
Weighted κ 0.48 0.61 
Mean (SD) of predicted scores 8.40 (.99) 7.43 (1.63) 
RMSE (unrounded) 1.40 1.90 
Correlation (unrounded) 0.56 0.68 
RMSE (rounded) 1.42 1.92 
Correlation (rounded) 0.54 0.67 
Sets of six scores N = 308 N = 254 
Weighted κ 0.51 0.61 
Mean (SD) of predicted scores 16.84 (1.87) 15.13 (3.04) 
RMSE (unrounded) 2.48 3.57 
Correlation (unrounded) 0.57 0.68 
RMSE (rounded) 2.50 3.56 
Correlation (rounded) 0.57 0.68 

Note. CAC = Content Advisory Committee, TPO = TOEFL Practice Online. 
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above for the sm-eval set only, but with the addition of results for a complete set of six tasks. For 

this total raw score summed across six tasks, the correlation between predicted scores and human-

assigned scores is .57. This is somewhat higher than we saw previously, for smaller sets of 

aggregated items, but still lower than we would like. 

As a final evaluation, in order to determine how much the performance of our scoring 

model might be obscured by the variability in the human scores assigned to the TPO data, we 

applied the same regression model to the field study data set. Because the scoring of the field 

study data was done under more tightly controlled conditions (yielding a correlation of .77 

between the two ratings on individual tasks), this evaluation was designed to provide an idea of 

how well the scoring model performs, given more varied distribution of candidates’ scores for 

training and evaluation.  

The slope and intercept parameters of the model were set to minimize the least squares 

error on the field study training data, and then the model was applied to the field study evaluation 

data, yielding the results in the final column of Table 12. Indeed, the greater variability of the 

human scores seems to make a large difference in the model’s performance, as we achieve a 

correlation of .68 between the predicted score and the human-assigned score on this data set, for 

six items combined. 

On the sm-eval and rec-train set, we also estimated the phi coefficient for the prediction 

of scores summed across six tasks. The phi coefficient for unrounded scores estimated by the 

CAC regression model was .93 and.85 for rounded scores. A similar analysis conducted on the 

human scores yielded a phi coefficient of .65 for single human ratings summed across six tasks, 

which resulted from the variability associated with both raters and tasks. 

CART. In this particular problem, mixed priors (average of equal priors across score 

levels and the priors of the sm-train sample) with the Gini or Entropy splitting rules3 gave 

comparable weighted kappas with the human scores on the cross-validation sample, among all 

the combinations. Then, the sm-eval sample cases were dropped down the best trees to obtain the 

classification rates.  

The optimal tree using the mixed priors and the Gini splitting rule is presented in Figure 7. 

This tree shows visually the features that partitioned the sm-train cases into different score classes 

(terminal nodes) at certain splitting values. Conceptually, the splitting features and values defined 
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the boundaries of different score classes. This is analogous to using responses that represent the 

lower and upper ends of a score class as range finders typically used in rater training.  

WPSEC <=   2.78
Terminal
Node 1

Class = 3
Class Cases %

1 8 1.5
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3 302 58.3
4 70 13.5
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Figure 7. The optimal tree for classifying different score classes (mixed priors, Gini 

splitting rule).  

Two steps were followed by the CAC to review the substantive meaning of the tree 

structure. First, the splitting features and the relationships between the splitting features and the 

score classes were examined. Specifically, the CAC evaluated whether the decision rules that led 

to the classifications of students into different score classes (the terminal nodes) were consistent 

with their understanding of some typical profiles of students represented at each score level. The 

second step involved an examination of the splitting values at each decision point. Each splitting 

value was examined to ensure that the one selected by the tree algorithm corresponded 
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empirically to the CAC’s judgments. To facilitate the second step, borderline cases at each 

decision point (feature values close to the splitting value), along with some misclassified cases, 

were reviewed. As shown in Figure 7, five features were present in the tree: (a) amscore, (b) 

wpsec, (c) wdpchk, (d) silmean, and (e) lmscore. The first, amscore, was a pronunciation feature 

(Delivery). The second through the fourth were fluency features (Delivery). The last feature, 

lmscore, was a grammar feature (Language Use). All five features received very high ratings 

from the CAC in terms of their linkage to and representation of certain feature classes and 

dimensions in the rubric (see Table 8). Regarding the construct coverage of these features, the 

key pronunciation and fluency features were well represented, and the only grammatical feature 

was also present in the tree. However, tpsecutt, a very important vocabulary diversity variable, 

was not selected as a primary splitting variable in this empirically grown tree. It has to be noted 

that in a tree structure, one variable may obscure the significance of another, known as masking 

(Steinberg & Colla, 1997). The variable importance score indicates a variable’s ability to mimic 

the functions of the primary splitters and to serve as replacements for primary splitters in the 

tree. This information can be used to select variables that are less expensive to collect or to 

enhance the substantive representation of the overall tree structure.  

Based on the variable importance ranking information (Table 13), tpsecutt was ranked as 

the third most important variable. This suggests the possibility of using this variable to replace 

one or more splitters in the tree to improve the construct representation of the scoring solution. 

Table 13  

Variable Importance Ranking  

Variable Score  
Amscore 100.00 |||||||||||||||||||||||||||||||||||||||||| 
Wpsec   59.07 |||||||||||||||||||||||| 
Tpsecutt   52.05 ||||||||||||||||||||| 
Longpwd   35.77 |||||||||||||| 
Wdpchk   34.44 |||||||||||||| 
Silmean   27.37 ||||||||||| 
Tpsec   18.35 ||||||| 
Silpwd     8.21 ||| 
Longpmn     7.17 || 
Lmscore     5.87 || 
Wdpchkmeandev     1.30  
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Now that we have examined the primary splitting variables, the decision rules that led to 

the terminal nodes are summarized in Table 14. These decision rules were considered by the 

CAC members to be reasonable. The different scoring rules for each score class were also 

deemed to be consistent with some of the typical profiles of students at a particular score level. 

However, a close examination of the cases in each terminal node would provide further 

confirmation that these profiles were typical. If they are determined to be nontypical upon further 

examinations, we can choose to remove the paths that led to the corresponding terminal nodes, 

because nontypical profiles are not very likely to generalize to new samples of candidates. 

Although we did not complete the second step, the work gave us some confidence that it was 

feasible to use expert judgments to examine the appropriateness of the splitting rules. The CAC 

Table 14  

Decision Rules for Different Score Classes  

Rule 
Terminal 

node Performance characteristics 
Score Class 1   

Rule 1 6 Poor pronunciation; pauses are on average long and chunks 
are very short (demonstrating very low automaticity) 

Rule 2 8 Poor pronunciation; longer chunks but pauses are on average 
longer than those in responses in Terminal Node 6 

Rule 3 9 Very poor pronunciation hinders the demonstration of other 
speaking skills  

Score Class 2   
Rule 1 4 Good pronunciation but less strong grammar; speech rate too 

fast  
Rule 2 5 Limited pronunciation skills; pauses are on average short 
Rule 3 7 Limited pronunciation skills; pauses are on average longer, 

but word per chunk is more than that of responses in 
Terminal Node 6 

Score Class 3   
Rule 1 1 Fair pronunciation and fast speech rate  
Rule 2 3 Very fast speech rate; good pronunciation and good 

grammar (very fast speech rate does not pose much problem 
due to good pronunciation and grammar)  

Score Class 4   
Rule 1 2 Very good pronunciation and very fast speech rate  
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members also noted that some other features, such as vocabulary sophistication and precision 

features and coherence and content relevance features, if available, may improve the accuracy in 

partitioning the cases into the right score classes. The optimal tree using the mixed priors and the 

Entropy splitting rule picked up two key variables, amscore and wpsec, as the primary splitters 

(Appendix D). This tree was nested in the tree examined in detail above, was less complex, but 

achieved almost the same level of accuracy. Although not explored in this study, it would be 

worthwhile to work with the CAC to compare these two tree structures and to take a hard look at 

which branches may generalize to new candidate samples, and thus should be kept, and which 

branches do not.  

Table 15 shows the performance of the two optimal CART models. The reported 

statistics were the same as those reported for the multiple regression models, for comparison 

purposes. As discussed above, the correlation is the most important statistic we use to evaluate 

the model performance, along with RMSE, weighted kappa, mean and standard deviation of the 

predicted scores, and the exact-plus-adjacent agreement rates. For both CART models, the 

correlations with the human scores were .49 for individual tasks and .57 for scores summed 

across three tasks. The two models also showed almost identical performance as indicated by the 

weighted kappa. 

For reasons mentioned above in the multiple regression results section, additional model 

evaluations were conducted with the TPO sm-eval and rec-train set and with the field study data 

set. When scores were aggregated across six tasks, we saw a correlation of .57 with the human 

scores. A CART trained on the field study training set was able to yield a correlation of .70 with 

human scores for sets of six tasks, indicating potential for improved performance with more 

variation in the scores (Table 16). As for the reliability of the scores, on the sm-eval and rec-train 

set, the phi coefficient for the scores summed across six tasks, estimated using the CART model 

(mixed priors and Gini splitting rule), was .90.  

CAC Review. Table 17 shows the ratings of the substantive meaning of the CAC multiple 

regression model and the CART model (mixed priors, Gini) by four CAC members, using the 

rating form in Appendix C. On all three questions, the CAC members showed a preference for 

the CART model, especially on Questions 2 and 3. They thought that the CART model was a 

better representation of the relationships between automated features and human scores and that 

the way the model operates was more consistent with how expert raters decided on a score. 
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Table 15  

Performance of Two Optimal CART Trees on TPO Scoring-Model Evaluation Set Data 

Model configuration  
Mixed priors,  

Gini splitting rule  
Mixed priors,  

Entropy splitting rule  
Single scores (N = 520) 

Quadratic-weighted κ .48 .48 
Exact agreement 54.62%  55.77%  
Exact + adjacent agreement 96.54% 96.92% 
Mean (SD) of predicted score 2.85(0.77) 2.88(0.72) 
RMSE (rounded) .75 .73 
Correlation (rounded) .49 .49 

  1 2 3 4   1 2 3 4 
1 5 10   3  0  3 12   3  0 
2 8 82  58 11  1 86  61 11 
3 2 60 165 62  0 58 169 62 

Confusion matrix:  
predicted vs. human scores 

4 0  2  20 32  0  2  20 32 
Pairs of scores (N = 232) 

Weighted κ .53 .52 
Mean (SD) of predicted scores 5.44(1.13) 5.76(1.26) 
RMSE (rounded) 1.22 1.19 
Correlation (rounded) .55 .54 

Triples of scores (N = 163) 
Weighted κ .55 .54 
Mean (SD) of predicted scores 8.67(1.95) 8.78(1.81) 
RMSE (rounded) 1.70 1.65 
Correlation (rounded) .57 .57 

Note. CART = classification and regression tree, TPO = TOEFL Practice Online. 
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Table 16  

CART (Mixed Priors, Gini) Model Performance on TPO Evaluation + Recognizer Training 

Set and on the TOEFL iBT Field Study Test Set  

Model configuration 
TPO evaluation + 

recognizer training set Field study test set 
Single scores N = 2,427 N = 1,752 
Quadratic-weighted κ .43 .59 
Exact agreement 50.5% 50.6% 
Exact + adjacent agreement 94.8% 93.3% 
Mean (SD) of predicted score 2.88(.80) 2.47(0.92) 
RMSE (rounded) .81 .73 
Correlation (rounded) .44 .62 

  1 2 3 4   1 2 3 4 
1 22   34   14   0  210 108  19   2 
2 67 305 273  64  101 275 162  15 
3 20 237 732 311   47 146 286  63 

Confusion matrix:  
predicted vs. human scores 

4   2   26 153 167     6   31 166 115
Pairs of scores N = 1,129 N = 854 
Weighted κ .49 .66 
Mean (SD) of predicted scores 5.76 (1.42) 4.98 (1.67) 
RMSE (rounded) 1.34 1.44 
Correlation (rounded) .50 .66 
Triples of scores N = 757 N = 555 
Weighted κ .53 .68 
Mean (SD) of predicted scores 8.71 (2.02) 7.53 (2.41) 
RMSE (rounded) 1.82 1.99 
Correlation (rounded) .54 .68 
Sets of six scores N = 308 N = 254 
Weighted κ .55 .69 
Mean (SD) of predicted scores 17.44(3.80) 15.45(4.49) 
RMSE (rounded) 3.28 3.65 
Correlation (rounded) .57 .70 

Note. CART = classification and regression tree, TPO = TOEFL Practice Online, iBT = Internet-

based test. 
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Table 17  

Evaluations of the Two Candidate Models by  

Four Content Advisory Committee Members  

Question 
and judge 

Multiple 
regression CART 

Question 1   
Judge 1 3.00 4.00 
Judge 2 3.00 4.00 
Judge 3 4.00 3.00 
Judge 4 3.00 4.00 
Avg.  3.25 3.75 

Question 2   
Judge 1 3.00 4.00 
Judge 2 2.00 5.00 
Judge 3 4.00 4.00 
Judge 4 3.00 4.00 
Avg. 3.00 4.25 

Question 3   
Judge 1 4.00 4.00 
Judge 2 3.00 4.00 
Judge 3 3.00 4.00 
Judge 4 1.00 3.00 
Avg. 2.75 3.75 

Note. Judges 1 and 2 are responsible for training and monitoring the TOEFL iBT Speaking 

raters. Judgments on the classification and regression trees (CART) model were made before it 

could be modified for construct considerations, whereas the multiple regression model was an 

expert weight model endorsed by the Content Advisory Committee.  

Although the models did not include any Topic Development features such as coherence, 

progression of ideas, and content relevance and did not cover the full spectrum of Language Use, 

they represented the Delivery features very well, especially fluency. Fluency is not a knowledge 

base on which speech production draws. Rather, fluency is related to multiple knowledge bases 

in speech production and manifests the degree of automaticity of deeper cognitive processes 

engaged during speech production. If a speaker does not have a large repertoire of lexical items, 



 64

syntactic frames, sentence structures, or organization devices readily available or has difficulty 

pronouncing some words, his or her speed in lexical, grammatical, or phonological encoding is 

most likely to slow down. The speaker thus may sound less fluent. Therefore, fluency tends to be 

a key aspect of speech that indicates the performance level of a speaker. 

Selecting the Final Scoring Model and the Score Reporting Method  

For the TPO data, the correlation with human scores indicated that the CART model 

yielded a better performance than the multiple regression model in predicting individual task 

scores and scores summed across up to three tasks. However, the performances of the two 

models converged as the scores were summed across more tasks. As we will report only the total 

test scores averaged across the six tasks for SpeechRater v1.0, the statistics on the total test score 

were considered the most important in the model evaluation. As summarized in Table 18, for 

scores summed across six tasks, the correlations between the predicted scores and the human 

scores were the same (r = .57) for the two models, and the weighted kappa for the total score was 

higher for the CART model (.55) than for the multiple regression model (.51). 

Table 18 

Comparison of the Best Multiple Regression Model (CAC) and the Best CART Model (Mixed 

Priors, Gini Splitting Rule)  

Multiple regression model  
(CAC weights) 

CART model  
(mixed priors, Gini splitting) 

Evaluation method 
for sets of six-item 

scores 
TPO evaluation + 

recognizer training set

TOEFL iBT 
Field Study 

test set 

TPO evaluation + 
recognizer training 

set 

TOEFL iBT 
Field Study 

test set 

Weighted κ 0.51 0.61 0.55 0.69 

RMSE (rounded) 2.50 3.56 3.28 3.65 

Correlation 
(rounded) 0.57 0.68 0.57 0.70 

Note. CAC = Content Advisory Committee, CART = classification and regression tree, TPO = 

TOEFL Practice Online.  
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We obtained much higher correlations with the human scores for both models (.68 for the 

multiple regression model and .70 for the CART model) on the field study data. This suggests 

that the performance of the models, as indicated by the correlation with human scores, is likely to 

improve with data that show more variability in the scores and are more evenly distributed across 

the four score levels. 

In terms of the generalizability of the scores, both the multiple regression and CART 

models produced scores that were highly generalizible across different tasks, the phi coefficient 

for scores summed across six tasks being over .90. Because automated scoring models could 

remove potential variability in the scores associated with raters, the dependability of the 

automated scores as indicated by the phi coefficient was actually much higher than that of the 

single human scores summed across six tasks (.65). When human raters were used, variability 

associated with both raters and tasks, and their interactions, contributed to the overall error 

variance in the scores. Therefore, if human rater agreement is poor, its adverse impact on the 

overall reliability of the scores may be severe.  

In selecting the final scoring model, we considered the substantive meaning of the model, 

the mathematical and statistical principles underlying each model type, and the empirical results 

of each model. In addition to comparing the relative performances of the models, we evaluated 

whether the construct representation and the empirical performance of the models met the 

minimal requirements for use in a practice environment.  

Despite the preference for the CART model by the CAC from the perspective of 

substantive meaning, both the multiple regression model and the CART model were judged to be 

adequate in representing the rubrics and in capturing the relationships between the automated 

features and the speaking construct for use in low-stakes practice settings, with ratings of 3 or 

above on a 5-point scale on Questions 1 and 2. The fact that the scoring models used only a subset 

of the features human raters use did not seem to have a serious adverse impact on the model 

performance, because the features included are key indicators of speaking performance, and 

different aspects of the speaking construct tend to be highly correlated (Xi & Mollaun, 2006).  

Regarding the technical quality of the models, in general, multiple regression, as a 

parametric model that assumes a linear relationship between the features and human scores, is 

very efficient in its computation and can provide a good prediction when linear relationships are 

observed or approximated in the data. In contrast, CART does not assume that the human scores 
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are particular functions of the features and allows the data structure to emerge from the data 

itself. Therefore, if the CART identifies multiple structures in the data, it may partition data into 

different regions and attempt to come up with a summary for the data structure in each region. 

This method may work well if, indeed, strong nonlinear relationships are present in the data. As 

for sample size requirement, multiple regression requires a much smaller sample to produce a 

stable solution than CART, because in CART the relevant data become less for each region, 

requiring a large sample to yield a stable solution.  

With regard to this particular problem, with some of the nonnormal features transformed 

and outliers preprocessed to improve the normality of the features and the linear relationships 

between the features and the human scores, the multiple regression solution yielded fairly similar 

results in predicting the total test scores as the CART model that used raw feature values. This 

level of agreement was acceptable for a low-stakes application such as the TPO, given that we 

obtained much higher correlations on the field study data, which were more varied and more 

evenly distributed across the four score levels.  

Although the CART model was superior in predicting the individual task scores and 

scores averaged across up to three tasks, we report only the total test scores averaged across six 

tasks in the SpeechRater v1.0. To this end, the performance of the multiple regression model 

appeared to be adequate.  

With regard to prediction bias, the multiple regression model produced lower bias than 

the CART model in the predicted total test scores, as shown in the means and the associated 

RMSE estimates. The multiple regression model was able to reproduce the mean of the total 

human test scores better than the CART model, and the RMSE estimate of the multiple 

regression model was smaller as well.  

Whereas the CART model was preferred by the CAC from a substantive perspective, the 

multiple regression model was favored by the TAC for its stability and parsimony. A multiple 

regression model that uses fixed weights based on expert judgments is also more flexible, 

compared to a CART model, if we need to modify the model to match the parameters of shifting 

TPO user populations (i.e., changes in means and standard deviations of scores). With the 

TOEFL iBT still rolling out in more countries and regions, some shifts in the TPO user 

populations are expected to occur. Therefore, we need to monitor closely the population shifts 

and to update the scoring model to match the new population parameters if necessary. An expert-



 67

weight multiple regression model would clearly be advantageous compared to CART for such 

efforts, as it would only involve rescaling to the mean and standard deviation of the new 

population. As for CART, priors that match the score distributions of the new population can be 

used in case of a population shift, but this is likely to lead to some changes in the model structure 

(i.e., splitting features and splitting values), which would require extensive technical and 

substantive reviews.  

Another consideration in choosing the final scoring model is that multiple regression is 

more accessible to the general measurement and language testing audience. Although CART has 

some characteristics that are compatible with the speaking construct and that are consistent with 

the way task-level speaking scores are assigned by human raters, as a more novel methodology, 

it may take some time for it to make its way into the mainstream measurement and testing 

literature. At the initial stage of launching an automated scoring system, it is especially important 

to adopt a scoring methodology that is both effective and easy to explain to the general public. 

Given the above considerations, a decision was made to use the multiple regression model for the 

SpeechRater v1.0. 

7. Development and Validation of a Filtering Approach 

Importance and Role of a Filter 

In our earlier discussion, we have focused on the task of assigning a score between 1 and 

4 to an individual student response. However, the full task to be addressed is somewhat more 

complicated. To build a system that could score all incoming audio responses, we must first 

determine whether the audio stream represents a scorable response (0 or TD vs. 1–4). The model 

that makes this determination is called the filtering model.  

The filtering model is applied to a response before it is sent to the regular scoring model. 

Its purpose is to determine whether a response constitutes a legitimate attempt to respond to a 

task and ought to receive a real score (1–4), or whether it is seriously anomalous in some way 

and ought to receive a 0 or a TD.  

The filtering model is an integral part of the whole scoring method, and the results 

associated with it provide evidence for the Evaluation inference that the SpeechRater scores are 

accurate in representing the quality of a candidate’s performance on the practice test. The 

development and validation of this model is presented as a separate section for the sake of clarity.  
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Approach to Filter Development 

We found that it was simple to build a model that discriminates between scores of 1–4 on 

the one hand and TD or 0 on the other. However, discriminating between TDs and 0s was much 

more difficult. The rubric used for the TOEFL iBT Speaking test defines the scores of 0 and TD 

in such a way that they are quite difficult to distinguish reliably, even for trained human scorers. 

Briefly stated, a score of 0 is assigned if the speaker was unwilling or unable to respond or made 

no attempt to answer the question, whereas a TD is assigned under a number of special 

conditions, such as if the response is too loud, too quiet, contains noise or feedback, or contains 

complete silence. The difficulty in distinguishing between the two score classes arises because 

by far the largest class of anomalous responses includes those that consist almost completely of 

silence. In such cases, the distinction between the two classes boils down to whether the scorer 

hears evidence of the candidate’s presence, such as breathing. If the candidate is thought to be at 

the microphone, the response is scored as a 0. Otherwise the candidate receives a TD.  

In a low-stakes application like the TPO, the penalty for not approaching each task in the 

way intended by the assessment design is very low; the only disincentive is that this would be a 

waste of money and an opportunity for practice on the task. Consequently, the chance of our 

model seeing anomalous responses is higher than in the TOEFL iBT, where few candidates are 

likely to risk getting a low score by failing to respond to a task.  

On that subset of our TPO data that both human raters scored as either a TD or a 0, the 

agreement between raters was very low (46.5%; κ = .094). It should be mentioned that the two 

sets of raters assigned different proportions of 0s and TDs, so it is possible that better agreement 

could be achieved if pains were taken to ensure consistent training of both groups of raters on 

this task.  

The difficulty in discrimination between 0s and TDs was apparent in our attempt to build 

the filtering model as well. None of the features we looked at was of any use in discriminating 

between responses assigned the scores 0 or TD.4 The features we considered included all of the 

features investigated for use in the scoring model as well as an additional set of rough prosodic 

features, consisting of the moments of utterance pitch and power. (In particular, a measurement 

of the average acoustic power of an utterance was considered a potentially promising way to 

determine whether a response contained any speech at all.)  
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In operational TOEFL iBT testing, whereas 0s are taken into account in computing the 

total scores, candidates are offered another chance to take the test if two or more TDs occur out 

of the six responses. However, given the purpose of the TPO, it is less crucial to make this 

distinction between 0 and TD than in operational testing, as we can offer candidates a second 

chance to respond in both cases. Therefore, we decided to construct a model to classify responses 

as either scorable or anomalous. Scorable responses are passed on to the regular scoring model 

for processing, whereas anomalous responses are treated as TDs in the practice environment, 

meaning that candidates are given an opportunity to rerecord their response. 

Design of the Study Evaluating the Filter 

In developing and evaluating the filtering model, we used the portion of the TPO data 

that consist of responses scored either 0 or TD by human raters. The data were subdivided into a 

training portion, filter-train, and a test portion, filter-test. The sm-train (described in Section 6) 

and filter-train sets were combined to produce the complete set of training data for this task (and 

similarly with the evaluation set), and scores were collapsed to pose the problem as a binary 

classification task. Responses with scores of 1–4 were labeled as scorable, whereas responses 

with scores TD or 0 were labeled anomalous. This left us with 1,595 responses to use for 

training, of which 338 were anomalous, and 660 responses for model evaluation, of which 140 

were anomalous. The summary statistics of the TPO data sets used in developing and evaluating 

the filtering model are presented in Table 19.  

Table 19  

Summary Statistics of the TPO Data Sets Used for Filtering Model Development and 

Evaluation  

Score distribution 
Data set 

No. 
responses 

No. 
speakers 

No.  
topics 

Avg. 
score 

SD of 
score TD 0 1 2 3 4 

sm-train 1,257 263 15 2.74 0.77     0     0 58 405 603 191
sm-eval    520 120    9 2.73 0.69     0     0 18 159 289    54

filter-train    338    93 15 N/A N/A 220 118   0     0     0     0
filter-test    140    41    9 N/A N/A   99   41   0     0     0     0

Note. TPO = TOEFL Practice Online; TD = technical difficulty; sm-train = scoring-model 

training, sm-eval = scoring-model evaluation; filter-train = training portion of data; filter-test = 

test portion. 
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Table 20, which presents the confusion matrix for human ratings of the responses in this 

combined data set, shows an overall exact agreement rate of 55.0% on single items, but this 

number is not very revealing. For a more informative assessment of the agreement levels 

between human raters, we need to break down the scoring process in the same way SpeechRater 

does. First, we consider the division of responses into the scorable class of responses, which are 

labeled 1–4, versus the anomalous class of responses, which are scored as TD or 0. Then, we 

determine the level of human agreement within each of these classes. 

If we conflate the score classes TD and 0 on the one hand and the scores 1–4 on the other, 

human agreement on this simpler distinction is quite good. The two sets of raters agreed with one 

another in classifying responses as scorable or anomalous 98.8% of the time (κ = .940). 

Agreement in classifying anomalous responses as either 0 or TD (the upper left four cells of 

Table 20) was much lower. The exact agreement was only 46.5% (κ = .094). 

Table 20  

Confusion Matrix Showing Single-Item Agreement Between Two Sets of  

Human Raters on Full Set of TPO Data 

  Rater 2 

   TD 0 1 2 3 4 Total 

TD  75   20    2      3      0    0   100 

0 225 138    3      0      0    0   366 

1    4    2  47     21      3    0     77 

2    9    2  66   582   347  17 1,023 

3  13    6  10   475 1,148 190 1,842 

4    4    3    1     52   430 340   830 

R
at

er
 1

 

Total 330 171 129 1,133 1,928 547 4,238 

Note. TD = Technical difficulty score, TPO = Test of English as a Foreign  

Language Practice Online. 

Analysis  

Fourteen speech features indicating the power and pitch characteristics of a response, the 

number of types of words in a response, and the recognizer’s overall confidence about its 



 71

recognition results were used as the candidate features for building the filtering model (cf. Table 

21). The first model that we considered simply used the training set to establish an optimal cutoff 

on a single feature. Although we did not expect this model to perform as well as the more 

complex model introduced below, we still might have used this single-feature model 

operationally if the performance difference was minor, because of its simplicity. The feature that 

gave us the best discrimination in our data set was types (the number of distinct words 

recognized). The trained model labeled all responses with fewer than 33 distinct word types 

(which was the optimal value for classifying the training set) as anomalous.  

Table 21  

Candidate Features for the Development of the Filtering Model  

Feature name Feature description 
  1. Powmean  Mean global power 
  2. Powmeandev  Mean deviation of power 
  3. Powvar  Variance of power 
  4. Powstddev  Standard deviation of power 
  5. Powmin  Power global minimum 
  6.  Powmax  Power global maximum 
  7. Powdelta  Power—difference between max and min (powmax – powmin) 
  8. Pitmeandevnorm  Pitch mean deviation normalized by mean pitch 
  9. Pitminnorm  Minimum pitch normalized by mean pitch 
10. Pitmaxnorm  Maximum pitch normalized by mean pitch 
11. Pitdeltanorm  Difference of maximum and minimum pitch normalized by mean pitch 
12. Types  Number of word types; i.e., unique word formsa 
13. Confavg  Average overall confidence scores in a sampleb 
14. Conftimeavg  Average of time-weighted confidence scores 
a Word forms are not stemmed; e.g., pet and pets are two types. b Every word has one confidence 

score associated with it. 

The other model we considered used four features: (a) types (number of distinct words 

recognized), (b) confavg (average recognizer confidence score), (c) powmean (average power of 

speech signal), and (d) powmeandev (mean absolute deviation of speech signal power). 

Intuitively, these features ensure that the likelihood of a response being labeled anomalous will 
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increase as (a) it contains fewer recognizable words, (b) the recognizer is less sure of its 

hypothesis, (c) it contains less sound, and (d) the variability of the sound level is lower. 

We used a classification by regression procedure to build this second model (Frank, 

Wang, Inglis, Holmes, & Witten, 1998). This means that we treated the class membership as a 

continuous variable (0 for anomalous responses and 1 for scorable ones) and then found the 

optimal cutoff on the regression value obtained. Feature values were standardized before model 

training for maximal interpretability of the weights.  

We used 10-fold cross-validation within the training sample to experiment with features 

and model configurations. Once we had converged on these two final models, we evaluated both 

on the test set. 

Results 

The results of these two candidate filtering models are provided in Table 22. In Table 22, 

overall accuracy is the proportion of all responses which each model classifies correctly. 

Precision is the proportion of the responses classified as anomalous that are indeed anomalous. 

Recall is the proportion of anomalous responses that our model correctly finds. False positive 

rate is the proportion of scorable responses that are misclassified as being anomalous. This final 

number, the false positive rate, is of greatest importance for our application. Although we do not 

want anomalous responses to receive a score, the cost of incorrectly filtering out a good response 

is much greater. 

Table 22  

Filtering Model Results in Percentages 

Model Overall accuracy Precision Recall False positive rate 
Using 10-fold cross-validation on training set 

One feature 97.8   96.9 92.6 0.8 
Four features 98.3   99.1 92.9 0.2 

Test set 
One feature 98.8   98.5 95.7 0.4 
Four features 99.2 100.0 96.4 0.0 
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Table 22 shows that the test set is somewhat easier than the training set and that our 

models generalize very well. Both models allow us to find over 90% of the anomalous responses, 

while keeping the false positive rate well under 1%. In our production application, we have 

chosen to use the four-feature model, because of its higher agreement with human raters, and 

because it is less reliant on a single source of information (the number of distinct words 

recognized). The feature weights in the multiple regression model were .56 for types, .09 for 

confavg, .14 for powmean, and .22 for powmeandev, so the types feature is clearly still the most 

important factor in this model. 

8. Development of the User Interface  

Having developed a scoring model that can predict scores based on the selected scoring 

features, we are left to address the user interface, which will convey the score information to 

users, as well as other relevant advisories that facilitate the interpretation and use of SpeechRater 

scores. In this section, we discuss the construction of the prediction intervals that convey the 

degree of uncertainty around the SpeechRater scores. We also describe the development of the 

score report and user advisories that communicate the limitations of SpeechRater v1.0 and stress 

the low-stakes use of the scores.  

This section presents evidence that can be fed into the Utilization inference that pertains 

to the relevance, sufficiency, and usefulness of the SpeechRater scores for the intended 

application. We also recognize that the evidence directly supporting the preceding inferences is 

relevant to the Utilization inference as well.  

Prediction Intervals  

In addition to our score prediction provided by the multiple regression scoring model, we 

provide an indication of the expected amount by which this predicted score might differ from the 

score a human would assign to a response, or a set of responses. In short, we provide a prediction 

interval.  

One way to do this would have been to provide a symmetric band, centered around the 

predicted score, based on the standard error of measurement. However, because the error for the 

extreme score levels is usually smaller than that for the middle score ranges, we chose instead to 

provide an interval based on a cumulative logit model, which estimates the likelihood of a 

predicted score corresponding to a human score at each point in the score scale. Given these 
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probabilities associated with each point in the score scale, we then could find a central region 

with a probability mass above a certain value and report it to the examinee as the interval within 

which a human’s rating would be expected to fall with a certain probability. 

A 90% prediction interval was chosen, because it contains enough of the probability mass 

that the examinees could be fairly certain that their scores would fall within that range, while 

allowing for relatively simple explanation (e.g., “9 times out of 10, a trained human rater would 

score your response within this range”). 

Figure 8 shows the 90% prediction intervals associated with each predicted score, for a 

full set of six tasks. Because we do not report any score but the total speaking section score on 

the TPO assessment, we did not need to create prediction intervals for individual task scores. 
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Figure 8. Prediction intervals for the full range of predicted speaking section scores. 

In Figure 8, the prediction interval for a given score predicted by SpeechRater v1.0 is to 

be read vertically, from the lower dotted line to the upper dotted line. So, to find the interval for a 

predicted score of 14, we read across the x-axis until we get to the 14 tick-mark and then follow 
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a vertical line straight up through the dotted lines at 10 and 18. Thus, for a predicted score of 14, 

the 90% prediction interval is (10, 18). The 90% prediction interval averages about 8 score 

points on the 0–24 raw total score scale. (It is a bit wider when this score is converted to the 0–

30 scale on which TOEFL iBT section scores are reported.) 

The cumulative logit model was trained on the combination of the sm-eval set and the 

rec-train set, because the former data set did not contain enough candidates with complete sets of 

six task scores. It is less than optimal to use data on which the speech recognizer was trained in 

further model building, but realistically we do not believe that there is any significant risk of any 

sort of overtraining that would corrupt the calculation of prediction intervals. It was necessary to 

combine these two data sets in order to have enough examinees with six completed items, so that 

we could carry out the analysis. Figure 8 shows the data from this combined set, plotting each 

correspondence between human score and predicted score for a set of six tasks as a point on the 

graph. The empty region in the lower left of the graph shows that our data contained very few 

examinees with aggregate scores below 10. 

Score Report and User Advisories  

The score report is a critical piece of an automated scoring system because it 

communicates to the users how the scores should be interpreted and used. The score report of the 

TOEFL iBT Speaking Practice test (Appendix E) reports both the total scaled score and the 

possible scores that one may receive if the test were scored by trained human raters. No 

individual task-level scores are reported. Because task-level scores were much less reliable, 

reporting only the total score summed across six tasks ensured that the reliability of the reported 

scores was at an acceptable level. In addition, the automated score had a much higher correlation 

with the human scores at the test level than at the task level. Therefore, the test-level scores were 

also more valid if human scores were used as the criterion. The range of human rater scores for a 

particular predicted automated score is included in the score report to communicate the 

uncertainty around the predicted total scores.  

A direct link to this score report, “How Your Practice Test Was Scored” (Appendix F), 

provided three key pieces of information:  

1. First, the SpeechRater v1.0 uses only a subset of the criteria used by human raters to 

score the TOEFL iBT Speaking test.  
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2. The SpeechRater scores are just estimates of candidates’ performances on the TOEFL 

Speaking Practice test.  

3. The score range should be interpreted as the range human scores would fall within 

90% of the time. 

Another document that is linked to the score report, “Frequently Asked Questions About 

TOEFL Practice Online Automated Scoring for Speaking” (FAQs; Appendix G), is intended to 

elaborate on the key points covered in “How Your Practice Test Was Scored” as well as 

communicate some additional messages. For example, this document cautions against using the 

TOEFL Speaking Practice Test scores to predict scores on TOEFL iBT Speaking test, which is 

taken under regular testing conditions, because no study has been completed yet to compare 

candidates’ performances on these two tests. These three documents convey to the users 

important information about the capabilities and limitations of the SpeechRater v1.0 and how 

these would impact the interpretations and uses of the SpeechRater scores.  

9. Discussion and Conclusion  

Evaluation of the Strength of the Overall Validity Argument 

We have attempted to develop different pieces of evidence required to support the 

interpretive argument about SpeechRater v1.0 as stated in Section 4. We now have come to the 

final step of integrating the evidence and evaluating the plausibility of the interpretative 

argument in the context of a validity argument. It is useful to revisit the claim we would like to 

support for SpeechRater v1.0. 

The SpeechRater v1.0 score is a prediction of the score on the TOEFL iBT Speaking 

Practice test a test taker would have obtained from trained human raters. The entire practice 

experience can help familiarize test takers with the content and format of the TOEFL iBT 

Speaking test so that they can better prepare for it. This score can be used by the test takers to 

help them self-evaluate their readiness to take the TOEFL iBT Speaking test.  

This claim clearly specifies the intended low-stakes use of the TOEFL iBT Speaking 

Practice test and the score that SpeechRater v1.0 produces. Although this claim states what the 

SpeechRater v1.0 intends to do, it also conveys, although not explicitly, what it does not do. 

First, it does not intend to predict a candidate’s potential performance on the TOEFL iBT 

Speaking test, which is taken under operational testing conditions. The motivation and anxiety 
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levels of the candidates may be different when taking the official test versus the practice test. 

When taking the real test, candidates may be more motivated but more nervous. In addition, 

candidates can make several attempts on each task in the practice test whereas they are allowed 

only one attempt on each task in the official test. When taking the practice test, candidates also 

could choose to use more time to plan a response before starting to record it, but this option is 

not available for the official test.  

Second, SpeechRater v1.0 does not intend to explain why a candidate receives a certain 

score. More specifically, the scoring model of the SpeechRater v1.0 does not mimic exactly how a 

human rater would have scored a test. It only intends to use meaningful speech features that indicate 

different aspects of candidates’ speaking performance to predict the score of a human rater. 

Given that this initial version of SpeechRater focuses on providing prediction of human 

scores at a level acceptable for low-stakes decisions in practice environments, three of the five 

inferences particularly need to be backed by relevant empirical or judgmental evidence: (a) 

Evaluation, (b) Generalization, and (c) Utilization. The Evaluation inference pertains to the 

accuracy of the automated scores; the Generalization inference concerns the stability of the 

scoring model and the generalizability of the scores across different tasks; and the Utilization 

inference is related to the sufficiency, relevance, and usefulness of the score and other related 

information provided to candidates for making self-evaluations of their speaking performance. 

Although the Extrapolation and the Explanation inferences are important, adding meaning and 

value to the SpeechRater scores to support the subsequent Utilization inference, it is less critical 

for them to be fully supported for this version of SpeechRater.  

Table 23 displays summaries of the evidence collected that is pertinent to the rebuttals 

that may weaken each of the inferences supporting the intended use of the scores. With regard to 

the Evaluation inference, the predicted scores by SpeechRater v1.0 were able to achieve an 

agreement with the human scores at a level considered to be reasonably adequate for a low-

stakes application. The appropriate model training and evaluation procedures also ensured the 

generalizability of the scoring model to new tasks and new samples of candidates. In addition, 

the predicted scores were shown to be highly generalizable across tasks, lending further support 

to the Generalization inference. We do not, however, have any evidence to show whether this 

decrease in the variability of SpeechRater scores associated with tasks in comparison to the 

human scores was desired. Because we have not collected the candidates’ scores on an  
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Table 23 

Evidence Collected to Discount the Rebuttals That Weaken Each Inference  

Rebuttals Counterevidence 
Evaluation: Automated scoring results in scores that accurately represent the quality of the 

performance on the practice test. 
1. The scoring algorithm under- or 

misrepresents the construct or 
introduces construct irrelevance so 
that the resulting scores are not 
accurate.  

 

The filtering model effectively separated scorable 
(scores 1–4) and nonscorable responses (0 or TD). We 
were not able to build a model that distinguished 0s 
from TDs well. However, this 0 vs. TD distinction is 
less critical for the practice test.  
The correlation between the automated and the human 
scores summed across six tasks was moderate (.57) but 
may improve with data that demonstrate more varied 
proficiency levels.  
The weighted kappa between the human and the 
automated scores summed across six tasks (.51) was 
only moderately high but may be higher with data that 
demonstrate more varied proficiency levels.  

Generalization: The scoring model can generalize to new tasks and samples of candidates, and the 
automated scores are generalizable over tasks. 

1. The scoring model is built from 
insufficient or unrepresentative samples. 

The model training sample was large (N = 1,257) and 
was representative of the candidates who have taken 
the TOEFL iBT Practice Speaking test. Although we 
might see population shifts after the TOEFL iBT rolls 
out in more countries and regions, concrete plans have 
been drawn up to monitor the population changes in 
relation to the phased roll-out plan and modify the 
scoring model accordingly.  

2. The scoring model does not generalize 
to new tasks or independent candidate 
samples.  

The scoring model was cross-validated on an 
independent testing sample (N = 520) that did not have 
the same tasks and candidates as in the training sample 
in tasks and candidates, supporting the generalizability 
of the scoring model to new tasks and to new samples 
of candidates.  

3. The automated scores do not 
generalize across tasks. 

The phi coefficient for the automated scores for six 
tasks was very high, indicating that the automated 
scores were generalizable across different tasks. That is 
to say, a candidate who takes a new set of tasks is 
likely to receive a similar automated score on the test. 

(Table continues) 
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Table 23 (continued) 

Rebuttals Counterevidence 

Extrapolation: The automated scores reflect the quality of performance on relevant real-world 
speaking tasks in an academic environment. 

1. Candidates’ automated scores are not 
related to their levels of performance 
on real-world speaking tasks in an 
academic environment.  

No evidence has been collected to discount this 
rebuttal.  

Explanation: The automated scoring model captures aspects of performance that reflect the 
underlying speaking abilities used in an academic setting. 

1. The automated scores are not adequate 
in explaining examinee performance 
in the domain.  

Based on Brown, Iwashita, & McNamara (2005), the 
rubrics for the TOEFL iBT Speaking test were 
reflective of what teachers of English as a second 
language and applied linguists thought were important 
in evaluating candidates’ speaking performance in an 
academic environment. However, the features used in 
the automated scoring model were only a subset of the 
criteria used by the human raters, reducing the model’s 
power in explaining candidates’ performance on real-
world speaking tasks.  

2. The speech features used in scoring 
models are not well linked to the 
rubric, introducing construct 
irrelevance.  

Based on the content specialists’ ratings, the speech 
features were reasonably well linked to certain aspects 
of the rubric.  

3. The speech features do not cover the 
key criteria defined in the rubric very 
well, resulting in construct 
underrepresentation.  

Based on the content specialists’ ratings, the speech 
features combined covered the TOEFL iBT rubric only 
moderately well.  

4. The speech features are not combined 
in a meaningful way to produce 
scores. 

The weights used to combine the features values to 
produce the automated scores were based on expert 
judgments and endorsed by the content specialists.  

5. The scoring model disproportionately 
captures aspects of the rubric that 
generalize across tasks, reducing task 
specificity in an undesirable way so 
that the constructs are 
underrepresented. 

No evidence has been collected to discount this 
rebuttal.  

(Table continues) 
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Table 23 (continued) 

Rebuttals Counterevidence 

Utilization: The automated test scores and other related information provided to candidates are 
relevant, useful, and sufficient for them to make intended decisions and promote positive effects on 

teaching and learning. 

1. The predicted scores and other 
information communicated to the 
candidates do not provide relevant, 
useful, and sufficient information for 
them to gauge their readiness to take 
the TOEFL iBT Speaking test. 

The 90% prediction intervals were fairly wide but were 
acceptable for candidates to use to get a sense of their 
readiness to take the TOEFL iBT Speaking test. 
The automated score feedback provides an estimate of 
a candidate’s scores on the TOEFL iBT Speaking 
Practice test that human scorers would have assigned. 
Therefore, they may be able to evaluate their level of 
speaking proficiency and make efforts to improve it if 
their scores are low. 

2. The automated scores negatively 
impact users’ perceptions of the 
assessment and the way they interpret 
and use the scores as intended. 

No evidence has been collected to discount this 
rebuttal. 

3. The potential negative consequences 
of SpeechRater v1.0 are not 
anticipated and minimized. 

The distinction between automated scoring for the 
TOEFL iBT Speaking Practice test and human scoring 
for the TOEFL iBT Speaking test is explicitly defined 
in the FAQs so that adverse impact on the credibility of 
the scoring of the TOEFL iBT Speaking test is 
minimized. 
The limitations of SpeechRater v1.0 are clearly 
communicated to the candidates through the two 
documents linked to the score report to caution against 
the use of the scores for important decisions. 

4. The automated scoring system does 
not promote positive washback effects 
on English language teaching and 
learning. 

No evidence has been collected to discount this 
rebuttal. 

Note. iBT = Internet-based test; TD = technical difficulty. 

appropriate criterion measure, we are not able to make that judgment. Thus, we cannot conclude 

how this would impact the Explanation inference.  

The scoring model used some key speech features considered to be meaningful by the 

content specialists and combined these features to produce scores in a way that was consistent 
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with how the content specialists thought they should contribute to the human score. However, we 

have to note that the features included in the scoring model were only a subset of the criteria that 

human raters use, reducing its power in explaining all of the key speaking skills underlying a 

candidate’s performance.  

With regard to the Utilization inference, the evidence discussed above for the Evaluation 

inference provides some support for the acceptable level of accuracy in the model’s prediction of 

human scores. Building on the evidence, we need to demonstrate further whether the predicted 

scores allow the candidates to evaluate their own readiness to take the official test, which is how 

the SpeechRater scores are intended to be used. As discussed earlier, SpeechRater is not intended 

to predict candidates’ scores on the official test, given possible differences in the motivation 

level and test-taking conditions. However, a candidate may be able to self-evaluate his or her 

readiness for the official test, knowing the conditions under which he or she has taken the 

practice test. A candidate could choose to take the practice test under the timed mode and make 

his or her best effort to respond to each task as if he or she were taking the official test. Only 

when taken under these circumstances would a candidate be able to assess his or her own 

readiness to take the official test.  

Error in the SpeechRater predicted scores on the practice test may impact the decision-

making processes of candidates who take the practice test to gauge their readiness to take the 

test. Receiving lower scores than deserved may discourage a candidate who is ready from taking 

the test, whereas getting higher scores than deserved may encourage a candidate who is not ready 

to take the test. Most likely, candidates may decide whether to take the official test after 

comparing their scores on the practice test to the admissions standards of the programs to which 

they are interested in applying.  

Based on the minimal score requirements on the TOEFL iBT Speaking test set by 

different schools for admitting international students into U.S. universities (ETS, n.d.), it appears 

that most schools select cut scores in the range of 20–23 on the scaled score scale (16–18 on the 

raw score scale) for the TOEFL iBT Speaking test. These cut scores translate into an average raw 

task score of 2.7–3.0 on a scale of 0–4 points. This suggests that for the TOEFL iBT Speaking 

Practice test, it is especially important for us to provide a good prediction for candidates whose 

raw total scores are in the range of 13–20 (i.e., those whose scores are around or just below the 

raw total cut scores). Candidates scoring in this range are likely to be “on the fence” regarding 
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their confidence in taking the official test and would need reasonably accurate score information 

to evaluate their own readiness for taking the official test.   

As shown in Figure 8, candidates’ scores were overpredicted at the very low end (raw 

score total in the range of 6–12), but the possible human scores would still be under 16, which 

are lower than the typical cut scores for admissions. Therefore, even if these low-scoring 

candidates received somewhat higher scores than warranted, generally they would not receive 

enough encouragement to think they were ready to take the official test. In contrast to the scores 

at the lower end, the scores at the very high end (raw score total in the range of 21–24) were 

underpredicted. However, for a practice test preparing candidates to take the TOEFL iBT 

Speaking test, the prediction error at the high end is less serious, thus not jeopardizing the 

intended use of the practice product. The tendencies of the middle range scores being over- or 

underpredicted by the SpeechRater were relatively low, compared to the scores at the higher or 

lower end. For predicted raw total scores in the range of 13–20, the 90% interval spans about 8 

score points on the 0–24 scale (Figure 8) and includes the range of typical admissions cut scores 

(16–18 on the raw score scale). The 90% interval around the SpeechRater scores was fairly wide. 

However, given that the score information may only be used by the candidates to determine their 

readiness for the official test or to help them practice their speaking skills, it was deemed to be 

acceptable for this purpose. Furthermore, the limitations of the SpeechRater v1.0 were explicitly 

conveyed to the users, including its underrepresentation of the speaking construct and its 

imperfect prediction of the human judgments on the practice test. Being forthright with the users 

about the limitations of the SpeechRater v1.0 could reduce the chances that the scores are 

misused for high-stakes decisions and mitigate potential negative consequences. In sum, the 

evidence collected in this project, when taken together, provides fairly adequate, if not strong, 

backing for the claim we wish to make for the SpeechRater v1.0.   

Decision to Release the Model to Operational Use on a Conditional Basis   

Ultimately, the construct representation in the CAC regression model was sufficiently 

broad to justify its use in low-stakes applications. While higher order parts of the speaking 

construct (such as grammar and topic development) are missing, or imperfectly modeled, more 

basic aspects of the construct (such as pronunciation and fluency) are richly represented. In 

addition, these different parts of the speaking construct tend to be highly correlated, so that the 
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absence of higher order factors is not as detrimental to the model’s agreement with human raters 

as it otherwise might be. 

The model’s agreement with human raters was not as high as we would have liked but is 

still suitable for use in low-stakes applications. The correlation of the six-item aggregate score 

with human raters is the best indication of model quality for this data, since this aggregated score 

is the only number we will report. Further, the correlation of .57 reported above is acceptable, 

given the low human agreement on this TPO scoring task and the fact that we obtain a much 

higher correlation of .68 on data with more variability in the scores, such as the field study data. 

Furthermore, the phi coefficient of the CAC regression model predicted scores was quite high for 

the six tasks, supporting the high degree of generalizability of scores across tasks.  

Given the limited construct representation and modest prediction accuracy of the CAC 

scoring model, recommendations were made to the TOEFL program to release the model for use 

in the TPO with the following conditions:  

1.   Prediction intervals must be reported to indicate the error around the automated scores. 

2.   Limitations of this version of SpeechRater must be communicated.  

3.   Distinction between the scoring for the TPO and for the TOEFL iBT must be stressed. 

4.   The low-stakes practice use of the scores must be emphasized.  

Conclusion 

This study reports the development of the SpeechRater v1.0 system and its validation for 

low-stakes practice purposes using an argument-based approach. The processes we followed to 

build this system represent a principled approach to maximizing two essential qualities of an 

automated scoring system: substantively meaningful and technically sound. The argument-based 

approach to validation provided a mechanism for us to articulate the strengths and weaknesses in 

the validity argument for SpeechRater v1.0 and put forward a transparent argument for using it 

for a low-stakes practice environment. An inherent advantage of this approach is that it allowed 

us to identify critical gaps in our existing research for SpeechRater v1.0 and allocate resources to 

address these gaps in our future research. Specifically, the areas of research to pursue include 

improving the prediction accuracy for the whole test-taking population and for test takers with 

different native language backgrounds and expanding the construct coverage of the scoring 
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model. Furthermore, we need to explore alternative criterion measures other than human scores 

to validate the automated scores. Other critical areas of investigation include users’ perceptions 

of and interactions with this system and the impact of users’ perceptions on their decision 

making based on the scores.   
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Notes 
 

1 From Table 11, center column. 

2 From Table 2. 

3 Gini is the default splitting rule used in CART that typically yields the best performance. For a 

multiclass problem, the Gini method tends to create splits where one target class prevails. The 

Entropy method tends to create splits where as many score classes are evenly distributed, thus 

putting more emphasis on getting accurate classification of rare classes.  

4 In this evaluation we again used the ratings provided by our second set of raters. As in the 

scoring model experiments above, we took the second set of ratings to be more reliable. 
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Appendix A 

Rating Form for Automated Speech Features  

In this table, for each feature, please rate the extent to which you agree or disagree with Statements 1–3. Please provide rationales for 

your rating in the cell right below each rating cell.  

 

No  Feature 

name  

Feature 

class  

Dimension  1. This feature is 

clearly linked to a key 

dimension in the rubric. 

 

Strongly      Strongly 

disagree        agree  

                     

2. This feature 

represents the feature 

class very well. 

 

Strongly      Strongly 

disagree        agree  

            

3. This feature 

represents the 

dimension very well.  

 

Strongly      Strongly 

disagree        agree  

                     

1 numwds Fluency  

 

D 

 

1   2   3   4   5   6  

 

  

1   2   3   4   5   6  

 

  

1   2   3   4   5   6  
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Appendix B 

Sample Recognition Output (CTM File) 

 

HEADER 7000100-VB123456 

UTT-Power 1.0 2.0 3.0 4.0 5.0 6.0 

UTT-SmoothPitch 200.0 220.0 240.0 220.0 240.0 200.0 

CTM 7000100-VB123456_0 1 0.0 0.38 this 0.99 

CTM 7000100-VB123456_0 1 0.38 0.85 is 0.98 

CTM 7000100-VB123456_0 1 0.85 1.11 an 0.99 

CTM 7000100-VB123456_0 1 1,52.2.42 example 0.94 

TRAILER AM: 222111.0 LM: 63050.1 
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Appendix C 

Rating Form for Evaluating the Construct Representation of Candidate-Scoring Models  

 

1. How well do the features included in the model represent the TOEFL iBT speaking rubric?  

 

1  2  3  4  5   

Not well                   Moderately well             Very well   

 

2. Given the limited number of automated features available, how well does the model capture 

the relationships between automated features and the speaking construct?  

1  2  3  4  5   

Not well                   Moderately well             Very well   

 

3. How consistent is the model with the decision-making processes that human raters use to 

derive a holistic score?  

1  2  3  4  5   

Not consistent               Somewhat consistent         Very consistent   
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Appendix D 

The Optimal Tree for Classifying Different Score Classes 

(Mixed Priors, Entropy Splitting Rule)  

 

WPSEC <=   2.78
T erminal
Node 1

Class = 3
Class Cases %

1 8 1.5
2 138 26.6
3 302 58.3
4 70 13.5

W = 518.00
N = 518

AMSCORE <= 392.93
T erminal
Node 2

Class = 4
Class Cases %

1 0 0.0
2 17 7.2
3 113 47.7
4 107 45.1

W = 237.00
N = 237

AMSCORE >  392.93
T erminal
Node 3

Class = 3
Class Cases %

1 0 0.0
2 20 40.0
3 27 54.0
4 3 6.0

W = 50.00
N = 50

WPSEC >    2.78
Node 3

Class = 4
Class Cases %

1 0 0.0
2 37 12.9
3 140 48.8
4 110 38.3

W = 287.00
N = 287

AMSCORE <= 440.68
Node 2

Class = 3
Class Cases %

1 8 1.0
2 175 21.7
3 442 54.9
4 180 22.4

W = 805.00
N = 805

AMSCORE <= 748.40
T erminal
Node 4

Class = 2
Class Cases %

1 35 8.2
2 223 52.0
3 160 37.3
4 11 2.6

W = 429.00
N = 429

AMSCORE >  748.40
T erminal
Node 5

Class = 1
Class Cases %

1 15 65.2
2 7 30.4
3 1 4.3
4 0 0.0

W = 23.00
N = 23

AMSCORE >  440.68
Node 4

Class = 2
Class Cases %

1 50 11.1
2 230 50.9
3 161 35.6
4 11 2.4

W = 452.00
N = 452

Node 1
Class = 3

Class Cases %
1 58 4.6
2 405 32.2
3 603 48.0
4 191 15.2
W = 1257.00

N = 1257
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Appendix E 

Score Report for the TOEFL iBT Speaking Practice Test 

 

TOEFL® IBT SPEAKING PRACTICE SCORE REPORT 

 

The purpose of this practice test is to help you prepare for the TOEFL iBT Speaking section. 

Performance on this test is not necessarily a predictor of how you might perform during an 

actual TOEFL administration because you are not taking this test under regular testing 

conditions. However, you are encouraged to use this practice test to get a better sense of the 

TOEFL iBT content and format, as well as receive scoring information on this preparation 

experience. Scores and information presented in this score report are for preparation use only 

and are not official test scores.  

 

Section Scaled Score* Scaled Score Range** 

Speaking  22 17–27 

 

*The Speaking section of this practice test was scored by an automated scoring system. Click 

here for further explanation of how this section of your test was scored.   

 

** The Scaled Score Range represents the scores that you might expect on this TOEFL Practice 

Speaking test if your responses were scored by a human grader using the TOEFL iBT scoring 

rubric rather than SpeechRater. If your responses to this TOEFL Practice Speaking test were 

graded by human raters rather than SpeechRater, your score would be expected to fall within the 

score range provided 90% of the time. 
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Appendix F 

How Your Practice Test Was Scored (Speaking)  

Your six speaking tasks were scored by the SpeechRater program, designed as an automated 

scoring system for the TOEFL® Practice Speaking tests. This program uses speech recognition 

and processing technology to evaluate important features of your spoken responses. The 

SpeechRater program is currently able to analyze pronunciation, fluency and some aspects of the 

vocabulary and grammar of spoken responses. However, the ability of the SpeechRater program 

to assess the content features of a response is still limited. In general, SpeechRater scoring is 

based on some, but not all, of the features currently evaluated by human raters for the Speaking 

section of the TOEFL iBT.  

 

To compute your Scaled Score, the SpeechRater program used all six of your responses to 

determine your overall spoken abilities on this test based on pronunciation, fluency, vocabulary 

and grammar features. SpeechRater scores for these features from the six items were combined. 

The total score was then converted to a score on a scale from 0–30. The reported score for the 

Speaking Section of the TOEFL iBT will also always be on this scale of 0–30. Because 

SpeechRater scoring is based on a subset of the criteria used by human raters, the Scaled Score it 

provides should not be considered more than an estimate of potential performance.  

 

Your score report for the Speaking Section also provides you with a Scaled Score Range. The 

score range represents possible scores you might obtain on the Speaking section of the TOEFL 

iBT. Your performance on the TOEFL iBT is likely to fall within the score range provided at 

least 90% of the time. 
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Appendix G 

Frequently Asked Questions About TOEFL Practice Online—

Automated Scoring for Speaking 

How were my responses scored?                                                        

Your responses were scored by a computer using a program specifically designed as an 

automated scoring system for the TOEFL Practice Online Speaking test. The SpeechRater 

computer program uses speech recognition and analysis technology to analyze your responses. 

The important features of your spoken responses that are analyzed to produce your scores are 

Pronunciation, Fluency, Vocabulary, and Grammar. 

Why are responses to the TOEFL Practice Online Speaking test rated by a computer? 

Using a computer instead of a human rater allows ETS to report your score on the Practice test 

within minutes.  

How is my TOEFL Practice Online Speaking test score different from a TOEFL iBT 

Speaking score?                                                                      

Both the TOEFL Practice Online Speaking test and TOEFL iBT Speaking test report your 

score on a scale of 0 to 30. However, the scores differ in two distinct ways: (1) the Practice 

test was scored by a computer rather than by a human rater and (2) the Practice test was 

scored by evaluating some, but not all, of the features evaluated by human raters for the 

TOEFL iBT Speaking test.  

How is SpeechRater automated scoring different from human rater scoring? 

SpeechRater scoring is an automated prediction of a score a human rater would assign for the 

same response. The score is produced by combining the evaluation of several important features 

of each response (pronunciation, fluency, vocabulary, and grammar.) Together these features 

cover part of the scoring criteria used by human raters to score TOEFL iBT Speaking test. 

Human raters scoring TOEFL iBT evaluate each response in the areas of Delivery 

(pronunciation, rhythm, intonation, rate of speech, pause structure, fluidity), Language Use 

(vocabulary and grammar), and Topic Development (content and coherence.)1 While 
                                                 
1 More information about the TOEFL iBT Scoring Rubrics is available at the ETS website: http://www.ets.org. 
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SpeechRater analyzes features of Delivery and Language Use, it is currently limited in its 

evaluation of Topic Development features. In general, SpeechRater scoring is based on a subset 

of the criteria currently evaluated by human raters for TOEFL iBT Speaking test. 

How do I get the most benefit from my TOEFL Practice Online Speaking score? 

A number of circumstances could cause this score to be a poor predictor of the scores human 

raters would have assigned your responses. Speakers who respond casually or carelessly to the 

speaking tasks, such as by responding with rehearsed speech that is not based on the speaking 

task, by responding in your native language, by reading from texts or notes, or by providing 

partial or incomplete responses are more likely to receive inaccurate scores. On the other hand, 

speakers who respond to the tasks seriously, as they would during a TOEFL iBT testing 

situation, are more likely to obtain a score reflecting their performance on practice speaking 

tasks that are similar to TOEFL iBT tasks. 

How does computer scoring work?                                                   

Your responses to each of the six speaking questions are recorded and sent to ETS where they 

are analyzed by SpeechRater, the automated speech recognition and analysis software system 

designed especially for TOEFL Speaking Practice test scoring. In developing the system, 

numerous responses to TOEFL Speaking Practice test questions were processed to establish a 

scoring model that defined the relationship between scores by human raters and the features of 

your responses (Pronunciation, Fluency, Vocabulary and Grammar) that are analyzed by 

SpeechRater. This scoring model was then slightly modified to reflect language experts’ 

judgments about how the score and important features of a response should be related. This 

modified scoring model is used to determine your score on each of the six tasks, which are then 

added together. The final score is converted to a 0-30 scale.  

Has the computer scoring been reviewed by experts?  

Language learning specialists and testing experts, both internal and external to ETS, were invited 

to advise and participate in selecting the speech features used to compute automated scores. The 

features currently used in the computer scoring were determined by these experts to represent 

important aspects of the scoring rubrics used by the TOEFL iBT Speaking test. The resulting 
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combination of features was determined to provide an acceptable overall evaluation of spoken 

responses for use in the TOEFL Practice test.  

Is my TOEFL Speaking Practice test score a prediction of my score on TOEFL iBT Speaking?    

While these practice materials are designed to help you better prepare for the TOEFL iBT 

Speaking, the score you receive on the practice materials may not be the same as what you would 

receive on the TOEFL iBT Speaking. Studies have not yet been completed to compare 

performance on the TOEFL Practice test and the TOEFL iBT Speaking test. Until such studies 

are completed it will not be known how closely TOEFL Speaking Practice scores predict TOEFL 

iBT Speaking scores. 

  




